
RESEARCH ARTICLE

Deep learning image recognition enables

efficient genome editing in zebrafish by

automated injections

Maria Lorena Cordero-MaldonadoID
1☯*, Simon Perathoner1☯¤a, Kees-Jan van der Kolk2☯,

Ralf BolandID
3, Ursula Heins-Marroquin1, Herman P. Spaink3, Annemarie H. Meijer3,

Alexander D. Crawford1¤b, Jan de SonnevilleID
2*

1 Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg, 2 Life

Science Methods BV, Leiden, the Netherlands, 3 Institute of Biology, Leiden University, Leiden, the

Netherlands

☯ These authors contributed equally to this work.

¤a Current address: Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany

¤b Current address: Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway

* marialorena.corderomaldonado@uni.lu (MLCM); jan@lifesciencemethods.com (JdS)

Abstract

One of the most popular techniques in zebrafish research is microinjection. This is a rapid

and efficient way to genetically manipulate early developing embryos, and to introduce

microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demon-

strate the development of a machine learning software that allows for microinjection at a

trained target site in zebrafish eggs at unprecedented speed. The software is based on the

open-source deep-learning library Inception v3. In a first step, the software distinguishes

wells containing embryos at one-cell stage from wells to be skipped with an accuracy of

93%. A second step was developed to pinpoint the injection site. Deep learning allows to

predict this location on average within 42 μm to manually annotated sites. Using a Graphics

Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested

our system by injecting a morpholino into the middle of the yolk and found that the auto-

mated injection efficiency is as efficient as manual injection (~ 80%). Next, we tested both

CRISPR/Cas9 and DNA construct injections into the zygote and obtained a comparable effi-

ciency to that of an experienced experimentalist. Combined with a higher throughput, this

results in a higher yield. Hence, the automated injection of CRISPR/Cas9 will allow high-

throughput applications to knock out and knock in relevant genes to study their mechanisms

or pathways of interest in diverse areas of biomedical research.

Introduction

Microinjection is one of the most powerful techniques used in zebrafish (Danio rerio), as it

allows to follow cell fate [1], evaluate pathogenesis of bacteria [2], produce chimeric individu-

als [3], study tumour progression [4,5], manipulate protein levels [6,7] and create genetically
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altered lines [8]. In addition, it is also a suitable technique to introduce chemical compounds

that otherwise do not readily enter the embryo due to the compound lipophilicity properties

and the protection function of the chorion [9]. More recently, microinjections have been also

used in the fields of toxicology and nanomedicine to evaluate nanoparticles toxicity at different

functional levels and to inject nanoparticles encapsulating genetic material or therapeutic

drugs to specific tissues in older embryos and/or larvae [10–13].

The intrinsic biological properties of zebrafish make it particularly amenable to this tech-

nique, since these cyprinids are highly fecund, a spawning pair typically producing more than

400 eggs at a time. Moreover, fertilization is external and spawning is confined to a brief period

at dawn (natural or artificial), allowing for timing of the experiments. Furthermore, the cho-

rion of zebrafish eggs is supple and easy to pierce.

Classically, injection of tracer dyes is used to identify single cell populations [14,15], to fol-

low cell lineages and to build fate maps in zebrafish [1,16]. The development of molecular

methods for the zebrafish model enabled functional studies by manipulating the expression of

specific genes. Injection of messenger RNA (mRNA) can be used to overexpress and misex-

press a specific protein [17], while morpholino antisense oligonucleotides (MOs) can be

employed to knock down a given target gene [18]. In zebrafish mRNA and MO injections are

simply performed by introducing a fine-tipped needle into the yolk of one-cell stage eggs and

delivering nanoliter volumes of the injection material into it [19]. As cytoplasmic streaming

will move the mRNA or MOs into the cytoplasm, it is not necessary that the injection targets

the cell. While injection into the yolk requires some skill, it can usually be learned within a few

weeks. Nevertheless, injections of mRNAs and MOs have their drawbacks. First of all, the

effect is only transient, i.e. the injected molecules will be degraded and/or diluted with time.

Moreover, in the case of mRNA injection, tissue-specific upregulation is not possible and a

given mRNA will be expressed in all tissues indiscriminately. Also, the specificity of MO anti-

sense technology has recently been questioned as MOs can sometimes lead to misleading

results due to toxicity and off-target effects [20]. In a recent study [21], loss-of-function muta-

tions for ten different genes previously thought to have an essential role in development failed

to recapitulate the corresponding morpholino-induced phenotypes. In several cases, the dis-

crepancy between mutant and morphant phenotypes, could be explained by genetic compen-

sation mechanisms that occur in mutants [22], however, undoubtedly rigorous controls are

required to ascertain the reliability of MO-induced phenotypes [20,23,24].

In the last years, with the implementation of targeted nuclease techniques in the zebrafish,

the demand for genetic evidence to define gene function has greatly increased. Fortunately,

after a somewhat slow start using zinc-finger nucleases (ZFNs) [25] and transcription activa-

tor-like effector nucleases (TALENs) [26], the adaptation of the prokaryotic CRISPR/Cas9

(clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9)

defence system to engineer genomes [27] has revolutionized reverse genetics in zebrafish.

Recently the CRISPR/Cas9 system was adapted and optimised to engineer genomes. A sin-

gle synthetic guide RNA (gRNA) directs Cas9-mediated cleavage of target DNA [27,28], and

the method was implemented in multiple systems including zebrafish [29,30], finally paving

the road for knock-ins in this model [31]. Along with Tol2 mediated transgenesis, a transposon

system based on the Tol2 element of medaka (Oryzias latipes) widely used in zebrafish to create

transgenic lines [8], the CRISPR/Cas9 system has become an essential tool for genome editing

in zebrafish. In this context microinjection is an essential technique. For the creation of geneti-

cally altered lines in zebrafish, be it through Tol2 transgenesis or by means of zinc finger nucle-

ases, TALEN or Cas9 nucleases, it is critical to inject the solution directly into the blastomere

at the one-cell stage or at least at the interface between blastomere and yolk [32–35]. Contrary

to RNA or MOs, DNA appears not to be transported into the blastomere via cytoplasmic
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streaming. Moreover, efficiency of all these genome editing techniques is much lower com-

pared to mRNA or MOs injections. Therefore, in order to create genetically altered zebrafish

lines it is essential to master microinjections into the cell. This can be challenging as this type

of injection requires long training and excellent technical skills.

Automated microinjection system

One of the first reports attempting to establish an automated microinjection system was pub-

lished by Wang and colleagues in 2007 [36]. This microrobotic system based on computer

vision and motion control was able to inject zebrafish embryos at an average speed of 25 sec-

onds per embryo. Although quite innovative, this system is limited by the low batch size (only

up to 24 embryos per plate) and low injection speed [33] compared to the first version of our

microinjection system [37,38]. This automated microinjection system featured half-spherical

wells, moulded in agarose gel, which allowed for high-throughput microinjection into the yolk

of zebrafish eggs at fast speed (1 embryo in 1.8 seconds). This was used for microinjection of

bacteria, morpholinos [37] and cancer cells [38]. The great advantage over other systems was

the higher batch size and speed of the injections allowing to inject up to 2000 embryos per

hour and up to 2580 embryos per plate. As the initial cell division steps in zebrafish embryos

occur in intervals of 20–40 minutes, speed is crucial for the accuracy, reproducibility and num-

ber of experiments.

In our experience, it is apparent that injections into the middle of the yolk are less suitable

for DNA injections. Therefore as a first step, the program “click-to-inject” was developed to

test the efficiency of injections closer to the first cell [38]. With this, we noticed that we could

achieve a great increase in efficiency, similar to manual injections done into the first cell.

Therefore, we set out to automate this procedure.

In this study we demonstrate the results of autonomous site selection and injection for

CRISPR/Cas9 and DNA manipulation of the zebrafish genome.

Materials and methods

Animals

Wild type adult zebrafish (AB or TL strain) are maintained in the Aquatic Facility of the Lux-

embourg Centre for Systems Biomedicine and the Institute of Biology, Leiden University,

according to standard protocols [39]. Zebrafish eggs were obtained by natural spawning on the

day of each experiment, kept in 0.3X Danieau’s solution (14 mM NaCl, 2 mM KCl, 0.12 mM

MgSO4, 1.8 mM Ca(NO3)2, 1.5 mM HEPES pH 7.5 and 0.03 M methylene blue) or egg water

(60 μg/ml sea salt, Sera Marin, Heinsberg, Germany), and staged by morphology (one-cell

stage) for the injections. After each series of injections, the eggs were incubated at 28˚C (±0.5)

and evaluated up to 5 days post-fertilization (dpf).

Anaesthesia of larvae used for live imaging and COPAS [37,40] analysis was done with

0.02% buffered Tricaine (3-aminobenzoic acid ethyl ester, Sigma-Aldrich) in egg water.

Ethics statement

The Luxembourg Centre for Systems Biomedicine is registered as an authorized breeder, sup-

plier and user of zebrafish (Danio rerio) with Grand-Ducal decree of 20 January 2016. Zebra-

fish lines used at the Institute of Biology, Leiden University were handled in compliance with

local animal welfare regulations as overseen by the Animal Welfare Body of Leiden University

(license number: 10612). All practices involving zebrafish were performed in accordance with

European laws, guidelines and policies for animal experimentation, housing and care
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(European Directive 2010/63/EU on the protection of animals used for scientific purposes).

The present study did not involve any procedures within the meaning of Article 3 of Directive

2010/63/EU and as such it is not subject to authorization by an ethics committee.

Morpholino antisense oligonucleotide

The translation blocking morpholino for slc45a2 (solute carrier family 45 member 2) was

obtained from Gene Tools according to Dooley et al., 2012 [41] with the following sequence:

5’-GCTGGTCCTCAGTAAGAAGAGTCAT-3’. In addition, a 3’ fluorescein modification was

included, which allowed fluorescent differentiation of injected eggs. A standard MO with

sequence 5’-CCTCTTACCTCAGTTACAATTTATA-3’ was used as an injection control. In

both cases, stock solutions (1 mM ~ 8 ng/nL) were prepared according to the specifications of

the provider and titrated working solutions were freshly prepared for each experiment.

Preparation of Cas9 mRNA, slc45a2 sgRNA and DNA construct

Both slc45a2 sgRNA and Cas9 mRNA were prepared according to Gagnon et al., 2014 [34].

Briefly, the slc45a2 DNA template was synthetized with T4 DNA polymerase (New England

BioLabs) using the oligonucleotides: slc45a2-specific (taa tac gac tca cta taG GTT
TGG GAA CCG GTC TGA Tgt ttt aga gct aga aat agc aag) and constant (AAA
AGC ACC GAC TCG GTG CCA CTT TTT CAA GTT GAT AAC GGA CTA GCCTTA
TTT TAA CTT GCT ATT TCT AGC TCT AAA AC). The sgRNA was synthetized using T7

RNA polymerase (Ambion MEGAscript) and then diluted to 400 ng/μl. Cas9 mRNA was

synthetized using the pCS2-Cas9 plasmid [42], transcribed using the SP6 mMessage mMa-

chine kit (Ambion) and finally diluted to 600 ng/μl.

The DNA plasmid was constructed using standard methods [43]. Briefly, a GFP reporter

(Tol2kit construct 389) and mCherry reporter (Tol2kit construct 233) expressed under a consti-

tutive promoter (Tol2kit construct 299) was constructed (final construct actb:-NLSmCherry-

IRES-GFP) in the Gateway Tol2 vector (pDestTol2pA2). The plasmid was transfected in E. coli,
isolated from an overnight liquid culture and diluted to 25 ng/μl. The Tol2 transposase RNA

was synthetized using SP6 RNA polymerase (Ambion mMESSAGE mMACHINE) and then

diluted to 25ng/μl.

Manual microinjections

Manual microinjections of slc45a2-MO, slc45a2 sgRNA/Cas9 and the DNA construct in

zebrafish embryos were performed following standard methods [19,44] using Eppendorf

FemtoJet microinjectors and both in-house pulled needles, prepared with thin-wall

capillaries (World Precision Instruments) and a P-1000 Micropipette Puller (Sutter

Instrument, USA), and commercially available ready-to-use 10 μm tip needles (Qvotek,

Mississauga, Canada). The needles for each round of injections were calibrated according

to well-established methods [19] using a stage micrometer slide (Carl Zeiss). Ultimately,

the required bolus size for injection was achieved and controlled by regulating the pres-

sure in the microinjector. After each series of microinjections, the embryos were incu-

bated at 28˚C (±0.5) and evaluated daily until 5 dpf to record non-viable embryos, (i.e.

non-fertilized, fluorescent negative, dead and dysmorphic embryos/larvae from 1 to 5

dpf), and the efficiency of injection. Table 1 shows the specifications of the different types

of manual injections that were performed in this study.
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Automated microinjections

Automated microinjections of slc45a2-MO, slc45a2 sgRNA/Cas9 and the DNA construct in zeb-

rafish embryos were performed using the robotic injector (Life Science Methods BV) following

guidelines described in Spaink et al. 2013 [38]. Briefly, all components of the robotic injector are

connected to a controlling computer that is equipped with a software control program written in

Python. The robot uses Eppendorf FemtoJet 4X microinjectors in combination with both in-

house pulled needles and commercially available ready-to-use 10 μm tip needles as described in

the section above. The established parameters for each needle (i.e. pressure and time) were then

used for the microinjector linked to the robot injector. Zebrafish embryos were carefully arranged

in each well of a 1% agarose covered grid (9 blocks x 100 wells) with the help of an artist brush.

Particularly for RNA injections, each embryo was also oriented (with the artist brush) to put the

one-cell visible for injection. The grid was then placed in the motorized stage coupled to a con-

trolled and motorized micro-manipulator. After the robotic injector was properly set (position of

grid and needle) automated injections occurred at high speed (Table 2). For RNA and DNA injec-

tions in the robotic injector we used an image classification algorithm (see section below) to rec-

ognize each embryo i.e. “First-cell”, “No-cell”, “Empty”, “Two-Cell”, and “Sick”, and to decide if

triggering an injection. The total count of injected embryos (i.e. classified as “First-cell” and “No-

cell”) and of non-injected wells (classified as “Empty”, “Two-Cell”, and “Sick”) was obtained at

the end of each injection round. After each series of microinjections, the embryos were incubated

at 28˚C (±0.5) and evaluated daily until 5 dpf to record non-viable embryos, (i.e. non-fertilized

and fluorescent negative at 6 hpf, dead and dysmorphic embryos/larvae from 1 to 5 dpf), and the

efficiency of injection. Table 2 shows the specifications of the different types of automated injec-

tions that were performed in this study.

Deep learning algorithm for image classification

As a first step we used the Inception v3 network to learn to distinguish between five different

categories: “Empty”, “No-Cell”, “First-Cell”, “Two-Cell”, “Sick” (this term is used to refer to

Table 1. Technical specification for the manual microinjections.

slc45a2 MO & control MO slc45a2 gRNA + Cas9 RNA DNA construct + Tol2 RNA

Injection type Manual Manual Manual

Developmental stage at

injection

One- to two-cell One-cell One-cell

Injection location Middle of the yolk Middle of the yolk Blastomere /yolk boundary

Sample concentration 230 μM 400 ng/μL + 600 ng/μL 25 ng/μL + 25 ng/μL

Injection volume 2 nL 4 nL 1 nL

Injection time(per 100

embryos)

P1: 5 min P1: 17 min P4: 4 min

P2: 3 min P2: 10 min

P3: 19 min

Microinjector type EppendorfFemtoJet 4X EppendorfFemtoJet 4X Eppendorf FemtoJet

Evaluation lapse From 6 hpf to 5 dpf From 6 hpf to 5 dpf From 6 hpf to 5 dpf

Sorting criteria GFP positive and albino phenotype Albino phenotype GFP positive

Exclusion criteria Non-fertilized, GFP negative, dysmorphic

and dead embryos / larvae

Non-fertilized, no albino phenotype,

dysmorphic and dead embryos / larvae

Non-fertilized, GFP negative,

dysmorphic and dead embryos / larvae

Place of the experiments LCSB LCSB Leiden University

Abbreviations: P1, experienced experimentalist; P2, expert experimentalist; P3, novice experimentalist; P4, experienced experimentalist; hpf, hours post-fertilization; dpf,

days post-fertilization; GFP, green fluorescent protein.

https://doi.org/10.1371/journal.pone.0202377.t001
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non-viable eggs). We used a total of 11,000 annotated images. To prevent overfitting, we artifi-

cially increased the number of training samples by performing four types of image transforma-

tion: 1) rotations about the center of the image; 2) zooming by a factor 0.9–1.1; 3) shifting by

28 pixels orthogonally in the +/- x and y direction, and 4) flipping the image horizontally. The

neural network architecture consisted of: 1) the top part of the Inception v3 network (contain-

ing all inception blocks); 2) a 2D global spatial average pooling layer; 3) a fully connected layer

of 1024 nodes with ReLU activation function, and 4) a fully connected layer of 5 nodes, with

softmax activation function. Training of the classification step was done using the Adam sto-

chastic optimizer [45], with a learning rate of 10−4. For a more in-depth description see S1

Text.

Deep learning algorithm for finding the injection site

For the injection point determination, we translated the (x y) coordinates to a vector in a trian-

gular mesh using a barycentric coordinate system. We let the outputs of the neural net corre-

spond to vertices in the mesh. In our case, we used 160 vertices.

The neural network architecture consists of: 1) the top part of the Inception v3 network

(containing all inception blocks); 2) a 2D global spatial average pooling layer; 3) a fully con-

nected layer of 1024 nodes with ReLU activation function, and 4) a fully connected layer of

160 nodes, with softmax activation function. We used 2724 images for training and 674 images

for validation (these are the same images as used for label "first-cell" in the classification step).

Training of the injection point determination step was done using the Adam optimizer, with a

learning rate varying from 10−3 to 10−5. More details can be found in S1 Text.

Software and hardware

For deep learning and robot control we used a Shuttle SZ170R8 equipped with an Intel Core i3

6100 CPU, 16 GB kit Kingston DDR4 2133Mhz, ECC memory and an NVidia GeForce GTX

1070 GPU. Installed software are: Keras 1.2.2, Theano 0.9.0, NumPy 1.11.0, SciPy 0.17.0. For

the analysis of the data, raw data for all the series of microinjections was processed in excel.

Statistical analysis was done using excel and GraphPad Prism 6 followed by unpaired t-test

Table 2. Technical specifications for the automated microinjections.

slc45a2 MO & control MO slc45a2 gRNA + Cas9 RNA DNA construct + Tol2 RNA

Injection type Automated Automated Automated

Developmental stage at

injection

One- to two-cell One-cell One-cell

Injection location Middle of the yolk Depending on image classification Depending on image classification

Injection volume 2 nL 4 nL 1 nL

Injection concentration 230 μM 400 ng/μL + 600 ng/μL 25 ng/μL + 25 ng/μL

Microinjector type Robotic injector + Eppendorf FemtoJet 4X Robotic injector + Eppendorf FemtoJet 4X Robotic injector + Eppendorf FemtoJet 4X

Injection time (per 100

embryos)

2–3 minutes 3 minutes 3 minutes

Evaluation lapse From 6 hpf to 5 dpf From 6 hpf to 5 dpf From 6 hpf to 5 dpf

Sorting criteria GFP positive and albino phenotype Albino phenotype GFP positive

Exclusion criteria Non-fertilized, GFP negative, dysmorphic

and dead embryos / larvae

Non-fertilized, no albino phenotype,

dysmorphic and dead embryos / larvae

Non-fertilized, GFP negative, dysmorphic

and dead embryos / larvae

Place of the experiments LCSB LCSB Leiden University

Abbreviations: hpf, hours post-fertilization; dpf, days post-fertilization; GFP, green fluorescent protein.

https://doi.org/10.1371/journal.pone.0202377.t002
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with Welch’s correction for single comparisons (when applicable). The criterion for statistical

significance was P<0.05. Graphs were plotted using GraphPad Prism 6 and error bars on all

graphs represent standard deviation.

Microscopy and fluorescent analysis

At the Institute of Biology, Leiden University, representative pictures were taken using a Leica

M205 FA stereo fluorescence microscope equipped with a DFC345 FX monochrome camera.

Fluorescent signal was quantified using a Complex Object Parameter Analyzer and Sorter

(COPAS, Union Biometrica). At the Luxembourg Centre for Systems Biomedicine, fluorescent

sorting of fluorescein positive embryos (for slc45a2-MO injections) was done using a Nikon

SMZ25 stereomicroscope. Representative pictures of control larvae and injected larvae display-

ing an albino phenotype were taken using the Nikon SMZ25 stereomicroscope equipped with

a Nikon Digital Sight DS-Ri1 camera.

Results and discussion

Manual and automated injections of slc45a2-MO

In order to test MO efficiency of manual and automated injections we employed a translation-

blocking MO against slc45a2 (solute carrier family 45 member 2). Downregulation of this gene

induces albino and/or hypo-pigmented morphants, as the melanophores are unable to pro-

duce melanin [41]. Manual and automated yolk microinjections were performed in parallel,

and in both cases the induced albino phenotype was assessed in larvae at 3 dpf (Fig 1). The

results obtained with both microinjection approaches are comparable and show that downre-

gulation of slc45a2 is highly efficient using morpholino antisense technology (Fig 1A). Addi-

tionally, the manual injections were performed by two different experimentalists (Fig 1B) and

this shows that efficiency and variation of efficiency obtained by manual morpholino injec-

tions differs from person to person and that the variation of the efficiency of the automated

injections is slightly larger.

Fig 1. Morpholino knockdown efficiency with manual and automated injections. (A) The survival and knockdown efficiency of slc45a2-MO manual and

automated (auto) microinjections were measured as the number of larvae displaying an albino phenotype at 3 days post-fertilization (dpf). Control-MO

injected larvae and uninjected larvae were processed in parallel and the resulting pigmented (wild-type) larvae were also counted at 3 dpf. “n =“ indicates the

number of eggs used to obtain this cumulative result. (B) Efficiency comparison between the automated injection into the yolk and manual injections

performed by two independent experimentalists (P1: experienced and P2: expert; not statistically significant). “n =“ indicates the number of experiments used

to calculate the average and standard deviation. Each experiment refers to different technical and biological experiments.

https://doi.org/10.1371/journal.pone.0202377.g001
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Semi-automated “click-to-inject”

After demonstrating that automated injection into the yolk is an efficient way to generate mor-

phants, we sought to apply the robotic injector for generating CRISPR/Cas9 mutants for

slc45a2. To investigate the dependence on the injection location we used the “click-to-inject”

program [38] to test the efficiency of injections closer to the first cell. In the “click-to-inject”

program the injection depth is set, but the (x y) position is chosen by the operator. To inject,

the operator moves the mouse pointer to a specific site (e.g. the first cell) and clicks to trigger

an injection and a subsequent movement to the next egg. Based on this, next we set out to

develop an automated image recognition to more precisely identify the first cell and to auto-

mate CRISPR/Cas9 injections.

Imaging conditions

In manual microinjection setups, as well as in standard microscopy, near-perfect imaging con-

ditions are applied with lighting from the bottom and imaging from the top, or vice versa. As

the zebrafish egg is very transparent, epi illumination from below is not suitable; most contrast

and edges are then lost. As the egg is spherical, a ring-light displays a very bright circle on top

of the egg. Therefore, to obtain better and more reproducible imaging conditions in different

locations, we placed a large (L x B = 60 x 80 cm2) diffuse light source above the robotic injector.

Five different classes were used to annotate the images (Fig 2). In the “Inject” class the ideal

injection position for automated microinjection is also annotated. Instead of injecting directly

Fig 2. Imaging classification for injection. Representative digital images measured from below of an agarose grid (“Empty”) that supports zebrafish eggs with the first

cell visible (“Inject”) or not visible (“No cell”), eggs in a two- or higher cell stage (“Two cell”) or non-viable eggs (“Sick”). In the “Inject” image an injection location is

indicated by a black dot with (x y) coordinates.

https://doi.org/10.1371/journal.pone.0202377.g002
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into the zygote, we have chosen to inject in the yolk, close to the visible zygote. The reason is

that injections in a thin zygote (less ideal orientation, or very early stage) would often cause a

rotation of the egg, and bounce the needle off. Injections into the yolk-blastomere boundary

almost never show this problem, and thus gave a higher yield.

Machine learning

Initially, we tried a classic approach of machine vision on these images. The Hough circle

transform [36] allowed us to detect the yolk with an above 90% accuracy. However, the next

step to find the first cell was problematic. In cases where the shadow of the micromanipulator

overlapped with the first cell, the edge detection algorithm failed. As an alternative to edge

detection, we annotated a database of images with injection positions. We used a Fast Fourier

Transform (FFT) algorithm to find a closest matching egg in this database and used that image

to infer an injection position. This worked reasonably well with a peak error (distance between

calculated position and annotated position) of 20 μm. However, when a good match could not

be found, the error was quite high, and as a result the tail of the error was quite large. An expla-

nation for the large variation in results is that there is also a large variation in first cell shapes,

especially when looking from an arbitrary angle. It can be an early very thin line up to about a

third of the yolk depending on the developmental stage and orientation of the egg. To over-

come this variation, we could make the annotated database larger, to increase the chance of a

close match. Nevertheless, the downside of this solution is that more images have to be com-

pared, and this takes more processing time during injection. Thus, we sought to apply a better

approach based on deep learning.

Using a database of annotated images as input, one can also train a deep learning network.

Instead of comparing images during runtime, one trains an algorithm that is afterwards used

to interpret new images. The execution time of this algorithm is independent of the size of the

training image set. Thus, roughly speaking, the larger the number of annotated images, the

higher the accuracy of the algorithm. We used the Inception v3 open source deep learning soft-

ware [46]. This software has been built and tested to categorize images, based on a large train-

ing database of images, initially for the annual ImageNet Large Scale Visual Recognition

Challenge (ILSVRC; www.image-net.org). The Inception v3 architecture uses a neural network

that takes the pixels of images as input and extracts features. Many features are subsequently

built on top of features, in different layers of neurons, in higher and higher levels of abstrac-

tion, until the neurons reach an output of defined categories [47]. One advantage of the Incep-

tion v3 software is that one can reuse the first layers of feature extraction for a different set of

images. This is built on the idea that the basic features, e.g. lines and simple patterns, can be

used in all higher-level features that are used to train new categories with new sets of images.

Within eight hours of training time we reached a 93% accuracy, with an execution time in the

order of tens of milliseconds.

After finding the images with a visible first cell, the next step was to determine the injection

location. To enable the use of deep learning for this problem, we had to modify the output

from categories into an ideal location. When just the pixel (x y) coordinate is used as output,

only one pixel of the whole image is correct. With this output the neuronal network cannot

easily distinguish between locations closer to the annotated location and further away, and this

makes learning impossible. Therefore, we translated the (x y) coordinates to a barycentric

coordinate system [48]. The Greek word “barys” means heavy and refers to the centre of grav-

ity. In a barycentric coordinate system a grid of triangles is used, with a weight assigned to

each vertex. This is used as follows. A chosen grid of triangles is placed on top of each image.

The annotated injection position will fall within one triangle; then the weights of these triangle
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vertices are given a value according to the location within that triangle. These weights sum up

to one, whereas the other vertices in the grid are all zero. This vertices output vector then rep-

resents the ideal outcome. The advantage is now that a small deviation from this ideal output

vector can be scored gradually instead of binary. This then allows for efficient training. A more

detailed explanation is available in S1 Text. After eight hours of training we created a table of

(x y) coordinates using validation images. We calculated the distance between the annotated

injection position and the position as predicted by the deep learning network (Fig 3). The aver-

age distance is 42 μm, as depicted in Fig 3B, and for 83% of the images this distance is smaller

than 60 μm.

Automated injection of slc45a2 gRNA/Cas9

Trial and error in many laboratories have led to a best practice of injecting into the first cell for

the application of the CRISPR/Cas9 editing technique. In our robotic microinjection system,

injecting in the middle of the yolk gives the highest speed. Image recognition used to customise

an injection location takes time but can increase the injection efficiency. To balance efficiency

and speed, and to be able to monitor improvements of our image recognition model, we

started by measuring efficiency of CRISPR/Cas9 injections performed in the yolk. Both man-

ual and automated yolk injections gave a very low efficiency of 12% (Fig 4A). Then, with the

“click-to-inject” program (semi-auto), resulting in injections closer to the first cell we could

generate albino larvae at an almost three times higher efficiency than with the injections in the

middle of the yolk (Fig 4A). Next, using deep learning (auto), we could automate this proce-

dure and with this we reached a slightly lower efficiency when comparing it the “click-to-

inject” injections but a higher efficiency than the one obtained with automated and manual

Fig 3. Distance between annotated and computed injection location. (A) Bar graph depicting the frequency of the distance between annotated and computed

injection position (prediction). (B) Digital image with a circle around an annotated injection point to illustrate the average distance between annotation and

prediction.

https://doi.org/10.1371/journal.pone.0202377.g003
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injections in the middle of the yolk (Fig 4A). Still, manual injections into the first cell reached

the highest efficiency of 43% (Fig 4A). Fig 4B shows that both the efficiency and the variation

between experiments differs considerably depending on the experimentalist (displayed as P1:

experienced, P2: expert and P3: novice). In contrast, here, the automated injections show rela-

tively little variation, also when compare them to the “click-to-inject” (semi-auto) injections

(Fig 4B). Also, it can be seen that the efficiency is quickly surpassed by humans given enough

experience (P1 and P2). This lower efficiency achieved with the robot can be explained by the

injection location–close-to-cell instead of into the zygote–and by the fact that not all the eggs

are oriented with a cell visible on the side, despite the fact that they are oriented in the agar

grid. Hence, the automated injections tend to be a mixture of injections into the middle of the

yolk, and close to the first cell, when the first cell was detected. With this we obtained an effi-

ciency of 24% on average (Fig 4B).

Automated injection of DNA

For the injections with DNA we used a COPAS (Complex Object Parameter Analyzer and

Sorter) system to measure the efficiency of the injections (Fig 5A). For this, we first measured

the highest red fluorescence signal of the uninjected control larvae and took the highest signal

as a threshold at 5 dpf. Then we measured the DNA-injected larvae and counted the larvae

that passed this threshold. The survival was measured at 1 dpf to focus on differences as a result

of the injection. Prior to placing the larvae into the COPAS system, larvae with visible develop-

mental defects were removed. Both the manual and automated injected eggs had a similar rela-

tive number of malformed embryos (4% on average).

These results show that DNA injections are less demanding in terms of injection location.

Injections into the middle of the yolk reached an average efficiency of 32%. This can be

improved by injecting close to the first cell, when possible, to reach an efficiency of 39%. Sur-

prisingly, here manual injections close to the first cell (personal preference) had a lower

Fig 4. Automated injections of CRISPR/Cas9. (A) Survival and average efficiency of slc45a2 gRNA/Cas9 manual, click-to-inject (semi-auto) and automated

(auto) microinjections both in the yolk and in the cell were measured as the number of larvae displaying an albino phenotype at 3 days post-fertilization (dpf).

Uninjected larvae were processed as controls and the resulting pigmented (wild-type) larvae were also counted at 3 dpf. “n =“ indicates the number of eggs that

were used to obtain the cumulative results. (B) Comparison of the average efficiency and standard deviation between the automated (auto), click-to-inject

(semi-auto) and manual injections performed by three independent experimentalists (P1: experienced, P2: expert and P3: novice). “n =“ indicates the number

of experiments that were used to calculate the average and standard deviation. Each experiment refers to different technical and biological experiments. �

P<0.05.

https://doi.org/10.1371/journal.pone.0202377.g004
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efficiency than could be obtained by automated injections and gave on average the same effi-

ciency as injections into the middle of the yolk.

Microinjection throughput

To calculate the microinjection throughput, we divided the average injection time by the aver-

age efficiency. This results in the average time needed for one successfully injected larva. We

measured and compared the throughput for the different genetic modifications and experi-

mental setups described in this article, i.e. automated and manual injections for gene knock-

down by morpholino antisense, gene knockout by CRISPR/Cas9 and transgenesis by Tol2
(Fig 6).

In the case of the manual injections, the throughput differs greatly depending on the experi-

mentalist, as experience can lead to a higher throughput by increasing both the efficiency and

speed of the injection process. It can also be seen that the robot is on par with fast human per-

formance in case of the morpholino injections, but 1.5 times as fast as average human

performance.

With deep learning, a robot can outperform humans on the more complex cell injections.

With CRISPR/Cas9 samples the robot needs 6 seconds of injection time to obtain a positive

larva, and humans need 8 up to 43 seconds. On average, the robot is more than three times

(3.6x) faster. Manual injections of DNA constructs close to the cell are faster to perform than

injections into the cell (2.5 seconds vs 6.8 seconds). However, this also reduces the manual effi-

ciency, resulting in a 1.5 times higher throughput of the robot. A movie showing the robotic

injection process in real-time is available in S1 File. The movie shows that the time between

capturing the image and placing the cross (demonstrating the calculated injection location) is

only about 100 milliseconds.

Efficiency dependence on the injection location

Contrary to what might be expected, the efficiency of injections into the middle of the yolk to

alter the genome were not negligible as the efficiency was 12% for CRISPR/Cas9, 32% for

Fig 5. Automated injections of DNA. (A) Average survival and efficiency of DNA automated (auto) and manual injections as measured by the COPAS

system. “n =“ indicates the number of eggs that were used to obtain the cumulative results. (B) Comparison of the average efficiency and standard deviation

between the automated and manual cell injections. P4 indicates a different experienced experimentalist and “n =“ indicates the number of experiments that

were used to calculate the average and standard deviation.

https://doi.org/10.1371/journal.pone.0202377.g005
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DNA injections and 80% for morpholino injections. Using the measured efficiencies and sta-

tistics of image classification we can calculate the efficiencies of injections close to the first cell.

During the injections of CRISPR/Cas9, on average 65% of the eggs were oriented with a first

cell visible, and 35% were injected into the middle of the yolk. The increase in efficiency, 24%,

was caused by 65% of the eggs being injected with efficiency much higher than 12%. Using the

efficiency of the yolk injections we can predict the efficiency of injections close to the first cell.

Solving the equation 0.65�X+0.35�0.12 = 0.24 for X results in an efficiency of around 30% for

injections close to the first cell. For DNA injections we have chosen to not orient the eggs after

placing them in a grid, and therefore less eggs, 46%, were injected close to the first cell. Solving

the equation 0.46�X + 0.54�0.32 = 0.39 for X results in a predicted efficiency of 47% for injec-

tions close to the first cell. Surprisingly, this is much higher than what was obtained by manual

injections close to the first cell. The higher efficiency of DNA injections (47%) versus CRISPR/

Cas9 injections (24%) can be partially explained by the fact that the integration of a single copy

of DNA construct can still be detected, while the readout of the CRISPR/Cas9 injection

requires a non-synonymous mutation to occur on both alleles in order to have a visible pheno-

type, the albino phenotype being recessive. A non-synonymous mutation in one copy of

slc45a2 would not be detected in our assay. Hence, we expect that the actual number of

induced CRISPR/Cas9 mutations is underestimated.

These measured and calculated efficiencies can also be used to make a prediction of the pos-

itive embryos, directly after the injection.

Fig 6. Average injection time required to obtain one positive genetically modified larva. Abbreviations: MO, slc45a2
morpholino; gRNA, slc45a2 gRNA/Cas9; DNA, Tol2 construct; Auto, automated injections; P1-4, four different

experimentalists.

https://doi.org/10.1371/journal.pone.0202377.g006
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Conclusion and perspectives

In this study we have demonstrated how we improved an automated injection robot to inject

close to the first cell using image recognition in order to enable efficient genome editing in

zebrafish embryos. This was accomplished using a modified open-source deep-learning soft-

ware and annotation of thousands of images. A step-by-step approach of first testing an anno-

tation strategy and efficiency helped to predict the increase in efficiency that can be obtained.

Initially we tested the efficiency with a semi-automated click-to-inject program. This click-to-

inject approach is also suitable as a first step for other microinjection applications, such as

injections into older zebrafish larvae or different organisms.

Because of its transparency, rapid development and easy genetic manipulation, zebrafish

have become a key vertebrate model organism for the elucidation of developmental processes.

With the advent of CRISPR/Cas9 technology, zebrafish are becoming an even more powerful

tool for the study of diverse human disorders. The CRISPR/Cas9 system achieves mutagenesis

rate of around 80% for generation of knockout lines [31], and has proven to have fewer side

effects than other genome editing technologies. However, generation of specific hereditable

mutations or epitope tagging of chromosomal genes in zebrafish is still challenging. Unfortu-

nately, genome editing in zebrafish is unpredictable and efficiency sometimes drops to 3.5%

[49]. Therefore, higher number of eggs should be injected for the generation of the expected

mutation. Creation of zebrafish mutant lines using CRISPR/Cas9 requires precise injections

into or close to the zygote. These types of injections take time to master and are tedious if

many batches of hundreds of eggs have to be injected, particularly for the generation of knock-

in lines. Our results have shown that efficiency and reproducibility of manual cell injections

highly depend on the training stage of the person performing the experiment, making it more

difficult to have this technique as a routine procedure in the laboratory. Here, we show the

establishment of automated injections as a reliable tool for the generation of CRISPR/Cas9

mutants. Automated microinjections are simple to learn and allow the cell injection of 100

embryos in 2.5 minutes with comparable efficiency to manual cell injections. This method

could also be used for high-throughput gene overexpression studies by microinjection of

mRNA.

The need for high-throughput genome manipulation

To date there have been almost 9,000 morpholinos used in zebrafish research. In addition, the

adaption of CRISPR/Cas9 editing technology is progressing faster than any other gene silenc-

ing method, and even faster than the adoption of morpholino knockdown technology (statis-

tics on zfin.org). However, injections of mRNAs or DNA must be more precise and are more

time consuming. Therefore injection can be a limiting step for high-throughput genetic stud-

ies. For the moment, there are about 30,000 known gene loci that could be interesting to

manipulate in order to investigate their function in development, disease or expressed pheno-

type (zfin.org). Multiplied with 300 injections that are typically used to obtain a mutant, and

multiple mutants per gene, this brings us to tens of millions of injections. Much time and

efforts would be saved if this tedious but needed task can be performed mostly by robotic

systems.
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S1 File. Movie demonstrating robotic injections with deep learning.
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S2 File. Demo source code and demo images.
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S3 File. Data set used for plotting the graphs.
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S1 Fig. Representative images of manual and automated yolk injections with slc45a2 mor-

pholino. The images show four days post-fertilization (dpf) larvae that were injected manually

(A) or injected by the automated robot (B) with control morpholino (top) and slc45a2 mor-

pholino (bottom). In both cases the albino phenotype is evident in the morphant larvae (bot-

tom), in which pigmentation is significantly reduced compared to the control morpholino

(top).

(TIF)

S2 Fig. Representative images of manual and automated injections with (act:-
NLSmCherry-IRES-GFP) Tol2 construct. The images show five days post-fertilization (dpf)

larvae that were subjected to manual cell injections or automated yolk or cell injections with a

(act:-NLSmCherry-IRES-GFP) Tol2 DNA construct and Tol2 transposase RNA. In all three

cases the phenotype is evident as fluorescent signal is significantly increased compared to the

uninjected control (top row). White scale bar = 250μm.

(TIF)

S3 Fig. Representative images of manual and automated cell injections with slc45a2
gRNA/Cas9. The images show four days post-fertilization (dpf) larvae that were subjected to

manual cell injections (A) or automated cell injections (B) with slc45a2 gRNA/Cas9. In both

cases the albino phenotype (bottom) is evident as pigmentation is significantly reduced com-

pared to the uninjected controls (top).

(TIF)
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deleterious mutations but not gene knockdowns. Nature. 2015; 524(7564): 230–233. https://doi.org/10.

1038/nature14580 PMID: 26168398

23. Stainier DY, Kontarakis Z, Rossi A. Making sense of anti-sense data. Developmental cell. 2015; 32(1):

7–8. https://doi.org/10.1016/j.devcel.2014.12.012 PMID: 25584794

24. Stainier DY, Raz E, Lawson ND, Ekker SC, Burdine RD, Eisen JS, et al. Guidelines for morpholino use

in zebrafish. PLOS Genetics. 2017; 13(10): e1007000. https://doi.org/10.1371/journal.pgen.1007000

PMID: 29049395

25. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger

nucleases. Nature Reviews Genetics. 2010; 11(9): 636–646. https://doi.org/10.1038/nrg2842 PMID:

20717154

26. Hwang WY, Peterson RT, Yeh JR. Methods for targeted mutagenesis in zebrafish using TALENs. Meth-

ods. 2014; 69(1): 76–84. https://doi.org/10.1016/j.ymeth.2014.04.009 PMID: 24747922

27. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–

guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096): 816–821. https://

doi.org/10.1126/science.1225829 PMID: 22745249

28. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering

via Cas9. Science. 2013; 339(6121): 823–826. https://doi.org/10.1126/science.1232033 PMID:

23287722

29. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebra-

fish using a CRISPR-Cas system. Nature biotechnology. 2013; 31(3): 227–229. https://doi.org/10.

1038/nbt.2501 PMID: 23360964

30. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature bio-

technology. 2014; 32(4): 347–355. https://doi.org/10.1038/nbt.2842 PMID: 24584096

31. Auer TO, Del Bene F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods.

2014; 69(2): 142–150. https://doi.org/10.1016/j.ymeth.2014.03.027 PMID: 24704174

32. Clark KJ, Voytas DF, Ekker SC. A TALE of two nucleases: gene targeting for the masses?. Zebrafish.

2011; 8(3): 147–149. https://doi.org/10.1089/zeb.2011.9993 PMID: 21929364

33. Foley JE, Yeh JR, Maeder ML, Reyon D, Sander JD, Peterson RT, et al. Rapid mutation of endogenous

zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PloS

one. 2009; 4(2):e4348. https://doi.org/10.1371/journal.pone.0004348 PMID: 19198653

34. Gagnon JA, Valen E, Thyme SB, Huang P, Ahkmetova L, Pauli A, et al. Efficient mutagenesis by Cas9

protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PloS

one. 2014; 9(5):e98186. https://doi.org/10.1371/journal.pone.0098186 PMID: 24873830

35. Gupta A, Hall VL, Kok FO, Shin M, McNulty JC, Lawson ND, et al. Targeted chromosomal deletions

and inversions in zebrafish. Genome research. 2013; 23(6): 1008–1017. https://doi.org/10.1101/gr.

154070.112 PMID: 23478401

36. Wang W, Liu X, Gelinas D, Ciruna B, Sun Y. A fully automated robotic system for microinjection of zeb-

rafish embryos. PloS one. 2007; 2(9):e862. https://doi.org/10.1371/journal.pone.0000862 PMID:

17848993

37. Carvalho R, de Sonneville J, Stockhammer OW, Savage ND, Veneman WJ, Ottenhoff TH, et al. A high-

throughput screen for tuberculosis progression. PloS one. 2011; 6(2):e16779. https://doi.org/10.1371/

journal.pone.0016779 PMID: 21390204

38. Spaink HP, Cui C, Wiweger MI, Jansen HJ, Veneman WJ, Marı́n-Juez R, et al. Robotic injection of zeb-

rafish embryos for high-throughput screening in disease models. Methods. 2013; 62(3): 246–254.

https://doi.org/10.1016/j.ymeth.2013.06.002 PMID: 23769806

39. Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed.,

Univ. of Oregon Press, Eugene. 2000

40. Dove A. Screening for content—the evolution of high throughput. Nature biotechnology. 2003; 21(8):

859–864. https://doi.org/10.1038/nbt0803-859 PMID: 12894197

41. Dooley CM, Schwarz H, Mueller KP, Mongera A, Konantz M, Neuhauss S, et al. Slc45a2 and C-ATPase

are regulators of melanosomal pH homeostasis in zebrafish, providing a mechanism for human pigment

evolution and disease. Pigment Cell Melanoma Res. 2012; 26: 205–217. https://doi.org/10.1111/pcmr.

12053 PMID: 23205854

Genome editing in zebrafish by automated injections

PLOS ONE | https://doi.org/10.1371/journal.pone.0202377 January 7, 2019 17 / 18

https://doi.org/10.1016/j.devcel.2014.11.018
http://www.ncbi.nlm.nih.gov/pubmed/25533206
https://doi.org/10.1038/nature14580
https://doi.org/10.1038/nature14580
http://www.ncbi.nlm.nih.gov/pubmed/26168398
https://doi.org/10.1016/j.devcel.2014.12.012
http://www.ncbi.nlm.nih.gov/pubmed/25584794
https://doi.org/10.1371/journal.pgen.1007000
http://www.ncbi.nlm.nih.gov/pubmed/29049395
https://doi.org/10.1038/nrg2842
http://www.ncbi.nlm.nih.gov/pubmed/20717154
https://doi.org/10.1016/j.ymeth.2014.04.009
http://www.ncbi.nlm.nih.gov/pubmed/24747922
https://doi.org/10.1126/science.1225829
https://doi.org/10.1126/science.1225829
http://www.ncbi.nlm.nih.gov/pubmed/22745249
https://doi.org/10.1126/science.1232033
http://www.ncbi.nlm.nih.gov/pubmed/23287722
https://doi.org/10.1038/nbt.2501
https://doi.org/10.1038/nbt.2501
http://www.ncbi.nlm.nih.gov/pubmed/23360964
https://doi.org/10.1038/nbt.2842
http://www.ncbi.nlm.nih.gov/pubmed/24584096
https://doi.org/10.1016/j.ymeth.2014.03.027
http://www.ncbi.nlm.nih.gov/pubmed/24704174
https://doi.org/10.1089/zeb.2011.9993
http://www.ncbi.nlm.nih.gov/pubmed/21929364
https://doi.org/10.1371/journal.pone.0004348
http://www.ncbi.nlm.nih.gov/pubmed/19198653
https://doi.org/10.1371/journal.pone.0098186
http://www.ncbi.nlm.nih.gov/pubmed/24873830
https://doi.org/10.1101/gr.154070.112
https://doi.org/10.1101/gr.154070.112
http://www.ncbi.nlm.nih.gov/pubmed/23478401
https://doi.org/10.1371/journal.pone.0000862
http://www.ncbi.nlm.nih.gov/pubmed/17848993
https://doi.org/10.1371/journal.pone.0016779
https://doi.org/10.1371/journal.pone.0016779
http://www.ncbi.nlm.nih.gov/pubmed/21390204
https://doi.org/10.1016/j.ymeth.2013.06.002
http://www.ncbi.nlm.nih.gov/pubmed/23769806
https://doi.org/10.1038/nbt0803-859
http://www.ncbi.nlm.nih.gov/pubmed/12894197
https://doi.org/10.1111/pcmr.12053
https://doi.org/10.1111/pcmr.12053
http://www.ncbi.nlm.nih.gov/pubmed/23205854
https://doi.org/10.1371/journal.pone.0202377


42. Irion U, Krauss J, Nüsslein-Volhard C. Precise and efficient genome editing in zebrafish using the

CRISPR/Cas9 system. Development. 2014; 141, 4827–4830. https://doi.org/10.1242/dev.115584

PMID: 25411213

43. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, et al. The Tol2kit: A multisite

gateway-based construction kit for Tol2 transposon transgenesis construct. Developmental Dynamics.

2007; 11: 3088–3099.

44. Lieschke G. Zebrafish: Methods and Protocols. Springer protocols, Heidelberg. 2008.

45. Kingma D, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980. 2014.

46. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for com-

puter vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

2016; 2818–2826.

47. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553): 436–444. https://doi.org/10.

1038/nature14539 PMID: 26017442

48. Ungar AA. Barycentric calculus in Euclidean and hyperbolic geometry: A comparative introduction.

2010.

49. Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, et al. Efficient CRISPR/Cas9

genome editing with low off-target effects in zebrafish. Development. 2013; 140(24): 4982–4987.

https://doi.org/10.1242/dev.099085 PMID: 24257628

Genome editing in zebrafish by automated injections

PLOS ONE | https://doi.org/10.1371/journal.pone.0202377 January 7, 2019 18 / 18

https://doi.org/10.1242/dev.115584
http://www.ncbi.nlm.nih.gov/pubmed/25411213
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1242/dev.099085
http://www.ncbi.nlm.nih.gov/pubmed/24257628
https://doi.org/10.1371/journal.pone.0202377

