136 research outputs found

    A free surface finite element model for low Froude number mould filling problems on fixed meshes

    Get PDF
    The simulation of low Froude number mould filling problems on fixed meshes presents significant difficulties. As the Froude number decreases, the coupling between the position of the interface and the resulting flow field increases. The usual two‐phase flow model provides poor results for such flow. In order to overcome the difficulties, a free surface model that applies boundary conditions at the interface accurately is used. Moreover, the use of wall laws on curved boundaries also fails in the case of low Froude number flows. To solve this second problem, we combine wall laws with ‘do nothing’ boundary conditions. A special feature of our approach is that ‘do nothing’ boundary conditions are only applied in the normal direction. These two key ingredients together with the Level Set method allow us to simulate three‐dimensional mould filling problems borrowed directly from the foundry

    A finite element model for free surface flows on fixed meshes

    Get PDF
    In this paper, we present a finite element model for free surface flows on fixed meshes. The main novelty of the approach, compared with typical fixed mesh finite element models for such flows, is that we take advantage of the particularities of free surface flow, instead of considering it a particular case of two‐phase flow. The fact that a given free surface implies a known boundary condition on the interface, allows us to solve the Navier–Stokes equations on the fluid domain uncoupled from the solution on the rest of the finite element mesh. This, together with the use of enhanced integration allows us to model low Froude number flows accurately, something that is not possible with typical two‐phase flow models applied to free surface flow

    Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions

    Get PDF
    In this paper we present a problem we have encountered using a stabilized finite element method on fixed grids for flows with interfaces modelled with the level set approach. We propose a solution based on enriching the pressure shape functions on the elements cut by the interface. The enrichment is used to enable the pressure gradient to be discontinuous at the interface, thus improving the ability to simulate the behaviour of fluids with different density under a gravitational force. The additional shape function used is local to each element and the corresponding degree of freedom can therefore be condensed prior to assembly, making the implementation quite simple on any existing finite element code

    The Fixed‐Mesh ALE approach for the numerical simulation of floating solids

    Get PDF
    In this paper, we propose a method to solve the problem of floating solids using always a background mesh for the spatial discretization of the fluid domain. The main feature of the method is that it properly accounts for the advection of information as the domain boundary evolves. To achieve this, we use an arbitrary Lagrangian–Eulerian framework, the distinctive characteristic being that at each time step results are projected onto a fixed, background mesh. We pay special attention to the tracking of the various interfaces and their intersections, and to the approximate imposition of coupling conditions between the solid and the fluid.&nbsp

    A Finite Element Model for Free Surface and Two Fluid Flows on Fixed Meshes

    Get PDF
    Los flujos con interfaces móviles (problemas de superficie libres y de dos fluidos) aparecen en numerosas aplicaciones de ingeniería. Los métodos presentados en esta tesis están orientados principalmente a la simulación del proceso de llenado de molde. Sin embargo la metodología es suficientemente general para ser aplicada a la mayoría de los flujos de superficie libres y de dos fluidos. El modelado numérico proporciona un modo eficiente de analizar los fenómenos físicos que ocurren durante procesos de inyección y fundición. Permite comprender detalles del flujo que de otra forma serían muy difíciles de observar.Se usa un método de elementos finitos de malla fija, donde la posición de interfaz es capturada por la función de Level Set. Los flujos a bajo número de Froude son particularmente desafiantes para los métodos de malla fija. Una representación precisa es necesaria en los elementos cortados por el frente. Se proponen dos alternativas. La primera alternativa usa el modelo de flujo de dos fases típico, enriqueciendo las funciones de forma de presión, para permitir una mejor aproximación de la discontinuidad en el gradiente de presión en la interfaz. La mejora de la representación del gradiente de presión es el ingrediente clave para el correcto modelado de tales flujos.La influencia del segundo fluido puede ser ignorada en una amplia variedad de aplicaciones para terminar con un modelo de superficie libre que es más simple que el modelo de flujo de dos fases. La discontinuidad en el gradiente de presión desaparece porque sólo se simula un fluido. La particularidad de este segundo método es que se usa una malla fija. Las condiciones de contorno son aplicadas exactamente usando integración mejorada e integrándose sólo en la parte llena de los elementos cortados por el frente. Se desarrolla un método ALE de malla fija para tener en cuenta correctamente que el dominio se mueve a pesar de que se usa una malla fija. Los métodos de segregación de presión son explorados como una alternativa a la discretización monolítica de las ecuaciones de Navier Stokes. Ellos desacoplan las incógnitas de velocidad y presión, conduciendo a subproblemas más pequeños y mejor condicionados. Los métodos de corrección de presión y corrección de velocidad son presentados y comparados numéricamente. Usando un Laplaciano discreto se obtiene un método de corrección de velocidad de tercer orden numéricamente estable.Los métodos son aplicados a problemas de llenado de moldes tridimensionales tomados directamente de la fundición con resultados muy satisfactorios. El modelo monolítico con superficial libre resulta ser la opción más robusta y eficiente. La comparación con un código comercial muestra la exactitud y la eficacia del método que proponemos.Flows with moving interfaces (free surface and two-fluid interface problems) appear in numerous engineering applications. The methods presented in this thesis are oriented mainly to the simulation of mould filling process. Nevertheless the methodology is sufficiently general as to be applied to most free surface and two-fluid interface flows. Numerical modeling provides an efficient way of analyzing the physical phenomena that occur during casting and injection processes. It gives insight into details of the flow that would otherwise be difficult to observe.A fixed mesh finite element method, where the interface position is captured by the Level Set function, is used. Low Froude number flows are particularly challenging for fixed grid methods. An accurate representation is needed in the elements cut by the interface for such flows. Two alternatives are proposed.The first alternative is to use the typical two-phase flow model enriching the pressure shape functions so that the discontinuity in the pressure gradient at the interface can be better approximated. The improvement in the representation of the pressure gradient is shown to be the key to ingredient for the successful modeling of such flows.The influence of the second fluid can be neglected on a wide range of applications to end up with a free surface model that is simpler than the twophase flow model. The discontinuity in the pressure gradient disappears because only one fluid is simulated. The particularity of this second approach is that a fixed mesh is used. Boundary conditions are applied accurately using enhanced integration and integrating only in the filled part of cut elements.A fixed mesh ALE approach is developed to correctly take into account that the domain is moving despite a fixed mesh is used.Pressure segregation methods are explored as an alternative to the monolithic discretization of the Navier Stokes equations. They uncouple the velocity and pressure unknowns, leading to smaller and better conditioned subproblems. Pressure correction and velocity correction methods are presented and compared numerically. Using a discrete Laplacian a numerically stable third order velocity correction method is obtained.The methods are applied to three dimensional mould filling problems borrowed directly from the foundry with very satisfactory results. The free surface monolithic model turns out to be the most robust and efficient option. The comparison with a commercial code shows the accuracy and efficiency of the method we propose

    The fixed-mesh ALE approach for the numerical approximation of flows in moving domains

    Get PDF
    In this paper we propose a method to approximate flow problems in moving domains using always a given grid for the spatial discretization, and therefore the formulation to be presented falls within the category of fixed-grid methods. Even though the imposition of boundary conditions is a key ingredient that is very often used to classify the fixed-grid method, our approach can be applied together with any technique to impose approximately boundary conditions, although we also describe the one we actually favor. Our main concern is to properly account for the advection of information as the domain boundary evolves. To achieve this, we use an arbitrary Lagrangian–Eulerian framework, the distinctive feature being that at each time step results are projected onto a fixed, background mesh, that is where the problem is actually solved

    Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier–Stokes equations

    Get PDF
    In this work, we present numerical comparisons of some stabilization methods for the incompressible Navier–Stokes. The first is the characteristic‐based split (CBS). It combines the characteristic Galerkin method to deal with convection‐dominated flows with a classical splitting technique, which in some cases allows us to use equal velocity–pressure interpolations. The other two approaches are particular cases of the subgrid scale (SGS) method. The first, obtained after an algebraic approximation of the subgrid scales, is very similar to the popular Galerkin/least‐squares (GLS) method, whereas in the second, the subscales are assumed to be orthogonal to the finite element space. It is shown that all these formulations display similar stabilization mechanisms, provided the stabilization parameter of the SGS methods is identified with the time step of the CBS approach. This paper provides the numerical experiments for the comparison of formulations made by Codina and Zienkiewicz in a previous article

    The Fixed-Mesh ALE approach for the numerical approximation of flows in moving domains

    Get PDF
    In this paper we propose a method to approximate flow problems in moving domains using always a given grid for the spatial discretization, and therefore the formulation to be presented falls within the category of fixed-grid methods. Even though the imposition of boundary conditions is a key ingredient that is very often used to classify the fixed-grid method, our approach can be applied together with any technique to impose approximately boundary conditions, although we also describe the one we actually favor. Our main concern is to properly account for the advection of information as the domain boundary evolves. To achieve this, we use an arbitrary Lagrangian- Eulerian framework, the distinctive feature being that at each time step results are projected onto a fixed, background mesh, that is where the problem is actually solved

    Multifluid flows with weak and strong discontinuous interfaces using an elemental enriched space

    Get PDF
    In a previous paper, the authors presented an elemental enriched space to be used in a finite-element framework (EFEM) capable of reproducing kinks and jumps in an unknown function using a fixed mesh in which the jumps and kinks do not coincide with the interelement boundaries. In this previous publication, only scalar transport problems were solved (thermal problems). In the present work, these ideas are generalized to vectorial unknowns, in particular, the incompressible Navier-Stokes equations for multifluid flows presenting internal moving interfaces. The advantage of the EFEM compared with global enrichment is the significant reduction in computing time when the internal interface is moving. In the EFEM, the matrix to be solved at each time step has not only the same amount of degrees of freedom (DOFs) but also the same connectivity between the DOFs. This frozen matrix graph enormously improves the efficiency of the solver. Another characteristic of the elemental enriched space presented here is that it allows a linear variation of the jump, thus improving the convergence rate, compared with other enriched spaces that have a constant variation of the jump. Furthermore, the implementation in any existing finite-element code is extremely easy with the version presented here because the new shape functions are based on the usual finite-element method shape functions for triangles or tetrahedrals, and once the internal DOFs are statically condensed, the resulting elements have exactly the same number of unknowns as the nonenriched finite elements.Peer ReviewedPreprin
    corecore