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SUMMARY

In this paper, we propose a method to solve the problem of floating solids using always a background
mesh for the spatial discretization of the fluid domain. The main feature of the method is that it properly
accounts for the advection of information as the domain boundary evolves. To achieve this, we use an
arbitrary Lagrangian–Eulerian framework, the distinctive characteristic being that at each time step results
are projected onto a fixed, background mesh. We pay special attention to the tracking of the various
interfaces and their intersections, and to the approximate imposition of coupling conditions between the
solid and the fluid. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the classical Arbitrary Eulerian Lagrangian (ALE) approach to solve CFD problems, the mesh in
which the computational domain is discretized is deformed. This is done according to a prescribed
motion of part of its boundary, which is transmitted to the interior nodes in a way as smooth
as possible so as to avoid mesh distortion. In this work, we present an ALE-type strategy with
a different motivation. In the Fixed Mesh-ALE (FM-ALE) method, instead of assuming that the
computational domain is defined by the mesh boundary, we assume that there is a boundary
function that defines where the flow takes place. When this boundary function moves, the flow
domain changes, and that must be taken into account at the moment of writing the conservation
equations that govern the flow, which need to be cast in the ALE format. However, our purpose
here is to explain how to use always a background fixed mesh. That requires a virtual motion of
the mesh nodes followed by a projection of the new node positions onto the fixed mesh.

The FM-ALE method for flow problems in moving domains was originally proposed in [1] and
it is extensively described in [2]. In [3] it is applied to free surface problems, and it is extended to
solid mechanics and fluid–structure interaction problems in [4]. Here we apply it to the problem
of simulating a floating rigid body in a liquid. In this case, the boundary function is defined by
the boundary of the solid, and its motion is determined by the dynamics of this solid. In turn, this
dynamical behavior is governed by the action exerted by the fluid on the rigid body surface. Apart
from the problem of dealing with a moving computational domain, an additional difficulty is the
presence of the free surface of the fluid on which the solid floats. This free surface may be treated
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as such or as an interface with a lighter fluid, for example air. In this work we adopt the former
approach, using an approximate imposition of boundary conditions at the intersection between the
fluid surface and the elements of the finite element mesh.

Several works have been already developed in the field of the simulation of floating solids. In [5],
floating bodies are simulated by means of the quasi arbitrary Lagrangian–Eulerian finite element
method (QALE-FEM method) by means of a moving mesh, but the solid displacements in the
numerical examples are small and there is no need to remesh. In [6], the FEM is used to simulate
the interaction between waves and a floating body, but again it focuses in the case in which the
solid body displacements are small, and the domain movement can be treated by moving the finite
element mesh and using an ALE framework. A fixed grid strategy for the simulation of solids
falling into water, which uses the cut-cell technique for fixed grids, has been used in [7], where
the impact of a cylindrical object on a water surface is studied, the main difference with respect to
the present approach being the way newly created nodes are treated. Floating bodies can also be
treated with the Chimera strategy described in [8], provided the free surface is considered as the
interface between the fluid analyzed and a fictitious one, for example air. The flow problem would
become in this case a two-phase flow rather than a free surface problem, and a possible way to deal
with it is explained in [9]. ALE approaches are also possible for the simulation of free surface,
fluid–structure interaction problems, as done for example in [10], but they require rebuilding the
finite element mesh when this mesh gets too distorted. In [11], the phase-field method is used to
analyze the wetting phenomena of the impact of a sphere with a free surface.

The novelty of the present work with respect to the previous ones is the use of fixed-mesh
strategy, which correctly takes into account the movement of the fluid domain at the time of
computing the ALE convective terms and time derivatives. We want to stress that this idea is
independent of the way to impose boundary conditions on the moving boundary. The way to
impose this prescription is often used to classify a particular fixed-mesh method. Since the physical
boundary is contained in the domain actually discretized, these methods are often called immersed
boundary methods. Moreover, since the fixed grid used is often Cartesian, these formulations can
be found under the keywords Cartesian grid methods (see for example the reviews [12–14]). These
methods are developed for constant-in-time domains, and then extended in a more or less ad hoc
way to time-dependent domains. In spite of the fact that we want to distinguish between the way
to deal with moving domains and the way of approximately imposing the boundary conditions on
the moving boundary, we will briefly describe the particular approach we use.

The paper is organized as follows. We present the general framework in Section 2, where we
describe the fluid and solid mechanics problems that have to be solved in a domain that evolves
in time, and also the level set approach we adopt for tracking the free surface. In Section 3, we
describe the numerical approximation we adopt for solving each of the subproblems involved in
the computations, including the spatial and time discretization, and the stabilization methods used
to deal with the fluid mechanics problems. Section 4 introduces the FM-ALE algorithm, and the
basic algorithmic steps are briefly schematized. We pay special attention to the features that are
particular to the problem of floating solids: approximate imposition of boundary conditions and
the interaction between the solid and the free surface boundaries. Section 5 corresponds to the
final algorithm of the method, and Section 6 presents a numerical example in which we show the
behavior of the proposed methodology. Some conclusions close the paper in Section 7.

2. PROBLEM STATEMENT

Let us consider a region �0 ⊂Rd (d =2,3) where a flow will take place during a time interval
[0,T ]. However, we consider the case in which the fluid at time t occupies only a subdomain
�(t)⊂�0 (note in particular that �(0)⊂�0). Suppose also that the boundary of �(t) is defined
by part of ��0 and a moving boundary that we call �f(t)=��(t)\��0 ∩��(t). This moving part
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Figure 1. Setting.

of ��(t) may correspond to the boundary of a moving solid immersed in the fluid or can be
determined by a level set function. The setting of the problem is described in Figure 1, where also
the solid domain �s(t) and the fluid–structure interface �sf have been depicted.

In order to cope with the time-dependency of �(t), we use the ALE approach. The incompressible
Navier–Stokes formulated in �(t), accounting also for the motion of this domain, can be written
as follows: find a velocity u :�(t)×(0,T )−→Rd and a pressure p :�(t)×(0,T )−→R such that

�

[
�u

�t
+(u−udom) ·∇u

]
−∇ ·(2�∇Su)+∇ p=�f, (1)

∇ ·u=0, (2)

where ∇Su is the symmetrical part of the velocity gradient, � is the fluid density, � is the viscosity,
f is the vector of body forces and udom is the domain velocity.

Boundary conditions are of the form

u= ū on �D,

n·r= t̄ on �N,

where n is the external normal to the boundary, r=−pI+2�∇Su is the Cauchy stress tensor and
ū and t̄ are the given boundary data.

When dealing with the fluid part of the domain, we also have to take into account the movement
of the free surface. This movement is dealt with by means of a level set function, as explained for
example in [3, 15].

In the level set method we define a smooth function � over �0, which allows us to determine
�(t). In our case we define �(t) as the region over which �(x, t) is positive. The position of the
fluid front will be defined by the iso-value contour �=0. The evolution of this level set function
is computed by means of the transport equation: find � :�0 ×(0,T )−→R such that

��

�t
+u·∇�=0, (3)

with the additional requirement that the advection velocity at the free surface coincides with
that of the fluid. The procedure used to compute the level set advection velocity is described in
Section 4.2.3.

For the solid part, we consider only the case of rigid bodies. The solid also evolves in time,
and we denote its domain by �s(t). As usual in solid mechanics problems, we face the problem
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in a purely Lagrangian way. Let us denote by xrb the position vector of the center of mass of
the rigid body, and by hrb the Euler angles. The motion equations for the rigid body are: find
xrb : (0,T )−→Rd and hrb : (0,T )−→Rd such that

m
d2xrb

dt2
=F, (4)

I
d2hrb

dt2
=T, (5)

where m is the mass of the rigid body, I is the inertia tensor that we have considered to be constant
in time for simplicity, F is the force vector at the center of mass and T is the torque at the center
of mass.

Initial and boundary conditions have to be appended to problem (1)–(2) and initial conditions
to (4)–(5). In order to impose these conditions, we redefine �f(t) as �f(t)=�free(t)∪�sf(t), where
�free(t) is the part of �f(t) corresponding to the free surface and �sf(t) is the part of �f(t)
corresponding to the interaction between the fluid and the structure.

In �free boundary conditions are of Neumann type, specifically we prescribe tractions to zero,
neglecting surface tension. In �sf we must impose the usual conditions in fluid–structure interaction
problems, which for rigid bodies are continuity of the velocity field and transmission of the forces
and torques exerted on the solid body by the fluid.

On the rest of the boundary of �(t), the usual Dirichlet and Neumann boundary conditions can
be considered.

3. NUMERICAL APPROXIMATION

3.1. The time-discrete problem

Let us start introducing some notation. Consider a uniform partition of [0,T ] into N time intervals
of length �t . Let us denote by f n the approximation of a time-dependent function f at time level
tn =n�t . We will also denote

� f n+1 = f n+1 − f n,

�t f n+1 = f n+1 − f n

�t
,

f n+� =� f n+1 +(1−�) f n, �∈ [ 1
2 ,1].

We will use the trapezoidal rule to discretize problem (1)–(2) in time. Suppose we are given
a computational domain �(tn) at time tn , with spatial coordinates labeled xn , and un and pn are
known in this domain. The velocity un+1 and the pressure pn+1 in the domain �(tn+�) can then
be found as the solution to the problem

�[�t un+1|xn +(un+�−un+�
dom) ·∇un+�]−∇ ·(2�∇Sun+�)+∇ pn+1 =�f n+�, (6)

∇ ·un+� =0, (7)

where now �t un+1|xn = (un+1(x)−un(xn))/�t , x being the spatial coordinates in �(tn+�). We are
interested only in the cases �= 1

2 and �=1 (implicit schemes are required). The same simple
trapezoidal rule is used to temporarily discretize the equation corresponding to the advection of
the level set function.
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For the temporal integration of the solid mechanics problem, we consider Newmark’s method:

mẍn+1
rb =Fn+1,

ẍn+1
rb = 1

��t2
[xn+1

rb −xn
rb − ẋn

rb�t]−
(

1

2�
−1

)
ẍn

rb,

ẋn+1
rb = �

��t
[xn+1

rb −xn
rb]+

(
1− 1

2�

)
�t ẍn

rb, (8)

and

Iḧ
n+1
rb =Tn+1,

ḧ
n+1
rb = 1

��t2
[hn+1

rb −hn
rb − ḣn

rb�t]−
(

1

2�
−1

)
ḧ

n
rb,

ḣ
n+1
rb = �

��t
[hn+1

rb −hn
rb]+

(
1− 1

2�

)
�t ḧ

n
rb, (9)

where � and � are parameters to be chosen. Most usual values are �= 1
4 and �= 1

2 , which provide
a second-order stable and non-dissipative scheme.

If � 	=1 in the trapezoidal rule in (6)–(7), results for the solid body unknowns at tn+� must be
interpolated, velocity continuity is imposed at tn+�. Another possibility would be to transport the
Navier–Stokes equations from �(tn+�) to �(tn+1), or to use a second-order backward difference
scheme for the time integration of the Navier–Stokes equations, in which all the terms are defined
at �(tn+1). Some of these possibilities are discussed in [16].

3.2. The fully discrete problem

The next step is to consider the spatial discretization of problem (6)–(7) (there is no need to spatially
discretize problem (8)–(9) since we are considering rigid bodies). As for the time discretization,
different options are possible. Here we simply describe the stabilized finite element formulation
employed in our numerical simulations.

Let {�e}n+1 be a finite element partition of the domain �(tn+1), with index e ranging from 1
to the number of elements nel (which may be different at different time steps). We denote with
a subscript h the finite element approximation to the unknown functions, and by vh and qh the
velocity and pressure test functions associated with {�e}n+1, respectively.

An important point is that we are interested in using equal interpolation for the velocity and
the pressure. This allows as to use the same elements both for the pressure and the velocity
unknowns, which results in a simpler implementation of the overall numerical problem. Therefore,
the corresponding finite element spaces are assumed to be built up using the standard continuous
interpolation functions.

In order to overcome the numerical problems of the standard Galerkin method, a stabilized finite
element formulation is applied. This formulation is presented in [17]. It is based on the subgrid-
scale concept introduced in [18], which reduces to the Galerkin/least-squares method [19] when
linear elements are used. We apply this stabilized formulation together with the finite difference
approximation in time (6)–(7).

The bottom line of the method is to test the continuous equations by the standard Galerkin
test functions plus perturbations that depend on the operator representing the differential equation
being solved. In our case, this operator corresponds to the linearized form of the time-discrete
Navier–Stokes equations (6)–(7). In this case, the method consists of finding un+1

h and pn+1
h such

that

mn+�
1 (�t u

n+1
h |xn ,vh)+an+�(uh,vh)+cn+�(uh −udom;uh,vh)+bn+�

1 (ph,vh)= ln+�
1 (vh), (10)

mn+�
2 (qh,�t u

n+1
h |xn )+bn+�

2 (qh,uh)+sn+�(qh, ph)= ln+�
2 (qh), (11)
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for all test functions vh and qh , with the former vanishing on the Dirichlet part of the boundary
�D. The different forms appearing in these equations are given by

m1(�t uh,vh)=
∫

�
vh ·��t uh d�+

nel∑
e=1

∫
�e
fu1 ·��t uh d�,

a(uh,vh)=
∫

�
2∇Svh :�∇Suh d�+

nel∑
e=1

∫
�e
fu1 ·(−2∇ ·(�∇Suh))d�+

nel∑
e=1

∫
�e

�u2∇ ·uh d�,

c(a;uh,vh)=
∫

�
vh ·(�a·∇uh)d�+

nel∑
e=1

∫
�e
fu1 ·(�a ·∇uh)d�,

b1(ph,vh)=−
∫

�
ph∇ ·vh d�+

nel∑
e=1

∫
�e
fu1 ·∇ ph d�,

m2(qh,�t uh)=
nel∑

e=1

∫
�e
fp ·��t uh d�,

b2(qh,uh)=
∫

�
qh∇ ·uh d�+

nel∑
e=1

∫
�e
fp ·(�a ·∇uh −2∇ ·(�∇Suh))d�,

s(qh, ph)=
nel∑

e=1

∫
�e
fp ·∇ ph d�,

l1(vh)=
∫

�
vh�·fd�+

nel∑
e=1

∫
�e
fu1 ·fd�+

∫
�N

vh · t̄,

l2(qh)=
nel∑

e=1

∫
�e
fp�·fd�,

where the functions fu1, �u2 and fp are computed within each element as

fu1 =	u[�(uh −udom) ·∇vh +2∇ ·(�∇Svh)], (12)

�u2 =	p∇ ·vh, (13)

fp =	u∇qh, (14)

and the parameters 	u and 	p are also computed element-wise as [20]

	u =
[

4�

h2
+ 2�|uh −udom|

h

]−1

, 	p =4�+2�|uh −udom|h,

where h is the element size for linear elements and half of it for quadratics.
A similar formulation is applied to solve the advection of the level set function.

4. THE FM-ALE METHOD

In this section we describe the general FM-ALE method, which we will apply to solve the fluid
part of the problem. See [2] for a more detailed explanation of the FM-ALE method in the
general framework of moving domains, and [4] for the application of the FM-ALE method to solid
mechanics and FSI problems.
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Figure 2. Two-dimensional FM-ALE schematic. Top-left: original finite element mesh M0 of �0. Top-right:
finite element mesh Mn of �(tn), with the elements represented by a thick line and the elements of M0

represented by thin line. Elements cut by the interface are split for integration purposes. Bottom-left:
updating of Mn to Mn+1

ALE using the classical ALE strategy. The previous position of �n
f is depicted using

a dotted line. Bottom-right: Mesh Mn+1 of �(tn+1), represented by a thick line. Elements intersected by
the boundary function are again split for integration purposes.

In this section and the ones that follow it, the numerical schemes will be particularized for �=1.

4.1. The general algorithm

Suppose that �0 is meshed with a finite element mesh M0 and that at the time level tn , the domain
�(tn) is meshed with a finite element mesh Mn . Let un

h be the velocity already computed on �(tn).
The purpose is to obtain the region the solid occupies at time tn+1, �(tn+1), and to compute the
various unknown fields. If the classical ALE method is used, Mn would deform to another mesh
defined at tn+1. In the FM-ALE approach we do not use this mesh to compute the unknowns of
the problem, but instead we re-mesh in such a way that the new mesh is, essentially, M0 once
again.

The steps of the algorithm to achieve the goal described are the following:

1. Define �n+1
f by updating the function that defines it.

2. Deform virtually the mesh Mn to Mn+1
ALE using the classical ALE concepts and compute the

mesh velocity un+1
dom.

3. Write down the ALE solid mechanics equations on Mn+1
ALE.

4. Split the elements of M0 cut by �n+1
f to define a mesh on �(tn+1), Mn+1.

5. Project the ALE solid mechanics equations from Mn+1
ALE to Mn+1.

6. Solve the equations on Mn+1 to compute the unknowns.

A global idea of the meshes involved in the process is represented in Figure 2. Note in particular
that at each time step, two sets of nodes have to be appropriately dealt with, namely, the newly
created nodes and the boundary nodes. Contrary to other fixed grid methods, newly created nodes
are treated in a completely natural way using the FM-ALE approach: the value of the velocity
there is directly given by the projection step from Mn+1

ALE to Mn+1. Boundary nodes are actually not
used. Instead, boundary conditions are imposed approximately to avoid the complexity of adding
nodes that do not belong to the background mesh M0.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1004–1023
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4.2. Details on some of the steps

4.2.1. Splitting of elements. Mesh Mn+1 is obtained by splitting the elements of M0 cut by �n+1
f .

Meshes Mn+1 and M0 only differ in the subelements created after the splitting just mentioned. Mesh
Mn+1 could be thought as a local refinement of mesh M0 to make it conform the boundary �n+1

f .
As in other fixed grid methods, this computational complication can be avoided by prescribing
boundary conditions on �n+1

f in an approximate way. Nevertheless, the local refinement from
M0 to Mn+1 is retained to perform the numerical integration of the different terms appearing in
(10)–(11).

However, depending on how �n+1
f intersects M0, the resulting subelements size could be very

small compared with the size of elements adjacent to �n+1
f . This results in an ill-conditioning of

the system of equations to be solved. In order to avoid this issue, we work with a slightly deformed
mesh at each time step constructed as follows: exterior nodes very close to �n+1

free (closer than 0.1h

for example) are displaced in a direction orthogonal to �n+1
f until they match exactly the body

surface. The splitting of this mesh will avoid ill-conditioned elements. A more detailed explanation
of this procedure can be found in [4].

4.2.2. Approximate imposition of boundary conditions. As we have already mentioned, it is very
convenient from the implementation standpoint to prescribe boundary conditions approximately.
We summarize next a strategy to prescribe Dirichlet boundary conditions on a generic immersed
boundary, that we denote by �. This strategy provides optimal order of accuracy and proves to be
suitable for both flow and fluid–structure interaction problems. See [21] for more details.

Let uh be the unknown solution of a problem posed in �⊂�0 for which we want to prescribe a
condition on �. Let �� be the set of elements cut by �, which is split as �� =��,in ∪��,out , where
��,in =�∩�� and ��,out is the interior of ��\��,in. Note that �=�in ∪��,in. For simplicity,
we will assume that the intersection of � with the element domains can be exactly represented by
the classical isoparametric mapping. For the notation to be used, see Figure 3.

Figure 3. Immersed boundary sketch in a 2D example. The subdomain to the left of the � boundary
corresponds to the fluid, whereas the subdomain to the right corresponds to the solid.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1004–1023
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Suppose that the unknown uh is interpolated as

uh(x) =
nin∑

a=1
I a
in(x)U a

in +
nout∑
b=1

I b
out(x)U b

out

= Iin(x)Uin +Iout(x)Uout,

where I a
in(x) and I b

out(x) are the standard interpolation functions, nin is the number of nodes in
�in, the domain where the problem needs to be solved (including layer L0) and nout the number
of nodes in layer L−1 (see Figure 3).

The objective is to compute Uout. Suppose that uh needs to be prescribed to a given function ū
on �. The main idea is to compute Uout by minimizing the functional

J2(Uin,Uout)=
∫

�
(uh(x)− ū(x))2 =

∫
�

(Iin(x)Uin +Iout(x)Uout − ū(x))2. (15)

Suppose now that the problem for uh in �in leads to an algebraic equation of the form

Kin,inUin +Kin,outUout =Fin. (16)

The domain integrals in matrices Kin,in and Kin,out extend only over �. The nodal values Uout are
merely used as degrees of freedom to interpolate uh in the domain �. If (16) is supplemented with
the equation resulting from the minimization of functional (15), the system to be solved is finally[

Kin,in Kin,out

N� M�

][
Uin

Uout

]
=

[
Fin

f�

]
, (17)

where

M� =
∫

�
It

out(x)Iout(x), f� =
∫

�
It

out(x)ū(x), N� =
∫

�
It

out(x)Iin(x).

It is important to note that this implementation maintains the connectivity of the background mesh.
There are a number of other methods for imposing Dirichlet boundary conditions on fixed meshes
which could have been used, see for example the strategies proposed in the Immersed Boundary
Method [22], the Fictitious Domain Method [23, 24] and the hybrid Cartesian/immersed boundary
methods [25–27]. The only difficulties in the imposition of boundary conditions near boundaries
with irregular geometry are associated with the fact that we consider the interface between the
‘inside the domain’ region and the ‘outside the domain’ region of each cut element to be a single
line segment. This introduces limitations in the tracking of the solid body geometry, especially
when sharp corners are present or, in the current work, in those elements that are cut by the solid
body boundary and the level set function at the same time. This is a common limitation of fixed
mesh methods that can be addressed by coding more complex subelement integration subroutines,
although this has not been done in the current work.

4.2.3. Tracking of �f. As explained before, the free surface is tracked by means of a level set
function. However, there still remain some points to be clarified about how this process is exactly
carried out. The main particularity of our problem is that the fluid boundary �f is represented not
only by �free but also by �sf (see Figure 1). Theoretically, if the advection velocity of � is that of
the rigid body in �sf, �free ∩�sf =�sf, but in practice both boundaries will rarely exactly coincide.
A strategy has to be devised to deal with this lack of coincidence of the functions that define the
boundary of the fluid domain, which is due to numerical approximation errors.

The first situation we consider is the one depicted in Figure 4. As we can see, �sf does not
coincide with the free surface �free, understood as the isovalue �=0 of the level set function.
This problem can be solved in the following manner: let us define �∗

free as the part of �free interior
to �s(t). Now we can define the fluid boundary as:

�f = (�free \�∗
free)∪�sf

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1004–1023
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Figure 4. Lack of coincidence of the boundary defined by �free and �sf.

Figure 5. �∗
free for different 
 parameters.

The second and more delicate problem occurs when �free gets delayed with respect to �sf due
to the extra numerical diffusion that appears in the advection of the level set. This situation is
outlined in Figure 5. As we are considering continuum mechanics, the only way the water surface
can separate from the solid is slipping. In order to avoid an incorrect separation process of the
fluid from the solid, we rely on the velocity in the non-computed air domain.

In the air domain, we do not solve the Navier–Stokes equations. This is the reason why we have
to compute an artificial velocity to advect the level set function. To do this, we solve a modified
Stokes problem with the following particularities: find a velocity u :�0 \�(t)−→Rd and a pressure
p :�0 \�(t)−→R such that

−∇ ·(2�∇Su)+∇ p= f, (18)

∇ ·u=−
, (19)

where 
 is a constant that is positive in the solid domain, and zero outside of it. Note that using the
positive constant 
 in the interior of the solid body does not introduce any extra numerical error
since (19) refers only to the computation of the artificial velocity. Slip boundary conditions are
applied except for �free where the fluid velocity is imposed. The positive constant 
, which has units
of [T −1], makes the solid body act as a sink, which allows us to avoid any numerically induced
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Figure 6. Highlighted nodes above the level set function: nodes in which we prescribe the level set function
to be equal to the signed distance from the nodes to the free surface. Highlighted nodes below the level
set function: nodes whose nodal values are such that the level set function is zero on the free surface

(Approximate imposition of boundary conditions).

delay in the advection of the interface. Again, the subgrid-scale method is used to stabilize the
problem and allow for equal velocity–pressure interpolation. This problem needs to be solved only
in a region close to �f. In the rest of �0 \�(t), the advection velocity can be more straightforwardly
computed, for example by means of a linear extrapolation.

As usual when using the level set method, we need to reinitialize the level set function for every
certain number of time steps. This reinitialization may move the position of the interface. In order
to avoid this, a special procedure is used in the nodes of cut elements. It is a slight variation of
the method presented in [28], which consists of the following: Suppose that we are given the free
surface configuration in Figure 6. Now we divide the nodes belonging to the elements cut by the
free surface in two sets, each set corresponding to one side of the free surface. In the first wet
side, we prescribe the nodal values of the level set function to be equal to the (signed) distance
between the node and the free surface.

We use the degrees of freedom of the nodes in the second side of the free surface to prescribe
the reinitialized level set function to be zero valued on the free surface, by using the approximate
imposition of boundary conditions of the previous section. On the rest of the nodes we prescribe
the level set function to be the signed distance from the nodes to the free surface, although we
could also use the more efficient procedure in [28], or other techniques as the one described
in [15]. This algorithmic procedure allows the reinitialized level set function to very accurately
track the free surface, that is, the free surface for the reinitialized level set function minimizes the
distance between the interface position before and after the reinitialization. This guarantees that
no significative mass loss is introduced during the reinitialization of the level set function, since
the error in the reinitialization is of O(�t2).

4.2.4. The ALE Navier–Stokes equations on the fixed-mesh. In order to write the ALE Navier-
Stokes equations on the background mesh, we first need to define the mesh velocity in the virtual
mesh. The mesh velocity on the boundary points can be computed from their position xn+1

b and
xn

b , where subscript b refers to points on �free. Once the velocity at the nodes of �free is known, it
has to be extended to the rest of the nodes. A classical possibility is to solve the Laplace problem
�udom =0 using un+1

dom,b as Dirichlet boundary conditions. However, it is also possible to restrict

udom 	=0 to the nodes next to �n+1
free , since in our approach mesh distortion does not accumulate

from one time step to another.
Once we have been able to define the deformed mesh Mn+1

ALE, we have to project the mesh
velocity and the unknowns at tn from Mn+1

ALE to Mn+1. Let Pn+1 be the projection of finite element
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functions defined on Mn+1
ALE to Mn+1. There are several possibilities to define this projection operator,

among them a simple interpolation scheme or the more involved L2 projection with restrictions
(for example conserving momentum or imposing that the resulting projected velocity field is
divergence free). Some of the possibilities for this projection schemes are discussed in [29].

The problem to be solved at time step n+1 is to find a velocity un+1
h and a pressure pn+1

h such
that

mn+1
1 (�t−1(un+1

h (x)− Pn+1(un
h,ALE(xn))),vh)+an+1(uh,vh)

+cn+1(uh − Pn+1(udom,ALE);uh,vh)+bn+1
1 (ph,vh)= ln+1

1 (vh), (20)

bn+1
2 (qh,uh)+sn+1(qh, ph)= ln+1

2 (qh), (21)

which again must hold for all velocity test functions vh and pressure test functions qh .
Problem (20)–(21) is posed on Mn+1 which, as it has been said, coincides with M0 except

for the splitting of the elements crossed by the interface. Even this difference can be avoided if
instead of prescribing exactly the boundary conditions, an approximation is performed. Therefore,
the goal of using a fixed mesh during the whole simulation has been achieved.

5. THE FINAL ALGORITHM

The resulting final algorithm for solving the fluid–structure interaction problem is shown in
Algorithm 1. Note that we compute the body position and the free surface position only once, at
the beginning of the time step and before the iterative process. To do this, we use the velocities
at the previous time step. This approximation allows us to avoid recomputing the body position at
each inner iteration, and obviously also reduce the computational effort at each time step.

Algorithm 1 Final algorithm.
1: for istep = 1:n do
2: Initialize variables
3: Obtain the fluid domain:
4: Update the solid body position
5: Advect the level set function �
6: Compute the fluid domain �n+1

7: Move the mesh virtually and compute the mesh velocity
8: Compute the mesh Mn+1 by splitting the elements of M0

9: Set i =1 (iteration counter)
10: while Not converged do
11: Solve the Navier-Stokes Equations
12: Check convergence
13: i = i +1
14: end while
15: Solve the rigid body motion equations
16: If needed, reinitialize �
17: end for

6. NUMERICAL EXAMPLES

In this section, we present two numerical examples that illustrate the behavior of the methodology
proposed in this work.
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Figure 7. Initial configuration, example 1.

The first example we propose consists of two rigid bodies falling into an incompressible fluid.
To run this example we use the FM-ALE method on the fluid part, and we track the free surface
by means of a level set function. The initial configuration of the problem can be seen in Figure 7.

The hold-all domain is the rectangle B = [0,2.4]×[0,1]. A background mesh of 7968 linear
triangles has been used. The fluid density is �=1 and the viscosity is set to �=0.001. For the
solid bodies, density is �=0.75.

Both the fluid and the structure are subject to a vertical gravity force of value g =−10. We
apply slip boundary conditions both at the interface between the fluid and the deposit wall and
at the interface between the solid bodies and the fluid. This means that only the velocity in the
direction normal to the interface has to coincide between the fluid and the solid bodies. In the free
surface, �free tractions in the normal direction are prescribed to zero.

The time step has been set to �t =0.02 and 150 time steps have been carried out. Regarding the
advection of the level set function, the 
 parameter for the artificial mass sink explained in Section
4.2.3 is taken as 
=2.

Figures 8–11 show the results for various time steps. Let us remark that the solution obtained is
smooth along all the computation, even for the first critical steps in which the rigid bodies contact
the free surface. The irregular boundaries are due to the fact that for ease of post processing, we
have plotted the solution in the elements cut by the boundary without taking into account that the
boundary of the domain does not fit the boundary of the elements.

The kind of computation involved in this example, in which the fluid region undergoes very large
deformations, would have implied the need for continuous remeshing if classical ALE methods
were used. Our fixed mesh strategy avoids it by projecting the results to the background mesh at
each time step.

The most critical situations in this problem, which are the instant in which the fluid closes
around the rigid body and surrounds it completely, and the instant when the solid body breaks the
free surface, are handled in a very natural way with the level set function strategy.

Coupling conditions between the fluid and the structure need to be imposed in an approximate
way. To do this we use the strategy described in Section 4.2.2, which is used to impose velocity
continuity in the direction normal to the interface.

In the second example, we simulate an oval body falling into an incompressible fluid. Again,
we use the FM-ALE method to simulate the fluid part, and we track the free surface with a level
set function. The initial configuration for this problem can be seen in Figure 12.

The hold-all domain is the rectangle B = [0,1]×[0,1]. The fluid density is �=1, and the
viscosity is set to �=0.01. For the solid body, the density is �=0.5. Both the fluid and the structure
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Figure 8. Unknown fields and free surface at t =0.36.
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Figure 9. Unknown fields and free surface at t =0.78.

are subject to a vertical gravity force of value g =−10. The time step has been set to �t =0.02
and 500 time steps have been carried out. Again, the parameter 
 has been set to 
=2.

In this case, we have used three different meshes in order to compare the behavior of the method
with different element sizes. In the first case, we have used a relatively coarse triangle mesh with
1890 nodes. In the second case we have used a finer mesh, with 5205 nodes and the last mesh
consisted of 11 614 nodes. We compare the vertical displacement of the center of mass of the solid
body in the three cases in Figure 13. We can see that we obtain a solution close to the converged
one for the vertical displacement with the two finer meshes. We have also represented vertical
and horizontal velocities for the solid body in Figure 14. Horizontal velocity for the solid body
should be zero due to the problem symmetry. The numerical errors introduced in the geometry
interpolation of the cut elements (the considered meshes are not symmetric) are the cause for
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Figure 10. Unknown fields and free surface at t =0.98.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 11. Unknown fields and free surface at t =2.40.

horizontal velocity to appear, although the horizontal velocity is small compared with the vertical
velocity and the domain size. In any case, as already explained this local error could be removed by
improving the numerical integration, which can be done by introducing appropriate subelements
for integration purposes.

Fluid velocity, free surface and solid body configurations can be seen in Figures 15–17. As
expected, in the final configuration, when the body is at rest, half of the body is inside the fluid
domain and half of it is in the air domain, since �s/�f =0.5. Again, the lack of symmetry in
the velocity fields in Figure 17, when both the fluid and the solid are close to rest, is due to the
cumulative numerical errors of the geometry interpolation in the cut elements.

Figure 18 shows the time evolution of the total fluid mass. We can see that mass loss is larger
in the coarse mesh case, and much smaller for the finer meshes although no method for correcting
mass loss has been used.
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Figure 12. Initial configuration, example 2.
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Figure 13. Time evolution of the vertical displacement.
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Figure 14. Time evolution of the vertical and horizontal velocities.
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Figure 15. Unknown fields and free surface at t =0.28.
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Figure 16. Unknown fields and free surface at t =2.5.

7. CONCLUSIONS

In this paper, the FM-ALE approach has been applied to the problem of floating solids. The main
feature of the method is its capability of using a fixed background mesh, but at the same time
correctly taking into account the domain movement in the computation of the time derivatives.
Moreover, values of the unknowns for the so-called newly created nodes are clearly and uniquely
defined with the FM-ALE approach. For free surface problems, the FM-ALE method avoids the
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Figure 17. Unknown fields and free surface at t =10.0.
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Figure 18. Time evolution of mass (with respect to initial mass).

need for remeshing which appears in the classical Lagrangian or ALE methods. Moreover, the free
surface is tracked in a very natural way with the level set function strategy, allowing for the solid
body breaking the free surface without any further algorithmic steps.

We have paid special attention to the interaction between the level set function and the solid
boundary function, which defines the fluid domain: in order to avoid the delay of the level set
function with respect to the solid boundary function, we have modified the Stokes problem to be
solved in the empty part of the domain, imposing the velocity divergence to be negative inside the
solid body.
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The proposed method has been used to solve the problem of rigid bodies falling into water, and
has proved to be robust and provide smooth solution fields, even at the critical instant in which
the solid body contacts the free surface.
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