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SUMMARY

In this work, we present numerical comparisons of some stabilization methods for the incompressible
Navier–Stokes. The first is the characteristic-based split (CBS). It combines the characteristic Galerkin
method to deal with convection-dominated flows with a classical splitting technique, which in some
cases allows us to use equal velocity–pressure interpolations. The other two approaches are particular
cases of the subgrid scale (SGS) method. The first, obtained after an algebraic approximation of the
subgrid scales, is very similar to the popular Galerkin/least-squares (GLS) method, whereas in the
second, the subscales are assumed to be orthogonal to the finite element space. It is shown that
all these formulations display similar stabilization mechanisms, provided the stabilization parameter
of the SGS methods is identified with the time step of the CBS approach. This paper provides the
numerical experiments for the comparison of formulations made by Codina and Zienkiewicz in a
previous article. Copyright � 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Navier–Stokes equations for an incompressible fluid moving in a domain � during the
time interval ]0, T [ can be written as

�tu + u · ∇u − ��u + ∇p = f (1)

∇ · u = 0 (2)
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where u is the velocity, p the pressure, f the vector of body forces and � the kinematic
viscosity. These equations have to be supplied with an initial condition of the form u = u0 at
t = 0 and a boundary condition which, for simplicity, will be taken as u = 0 on ��.

Whichever the time discretization method of (1) is, the spatial discretization may suffer
from two major numerical problems. The first is the velocity–pressure interpolation. The zero
divergence restriction imposes a compatibility condition for this interpolation that, in particular,
prevents the use of equal interpolation for the velocity and the pressure. Likewise, when
convection dominates, spurious spatial oscillations may occur if the standard Galerkin
formulation is used, similarly to what happens with centred finite difference schemes. This
has to be understood as a numerical problem, and is independent of the complicated flow
features (including turbulence) that appear when the Reynolds number is high. The parameter
that plays a role in this case is the cell Reynolds number rather than the global one. See
Reference [1] for background.

These two numerical problems have been treated with a variety of finite element formulations.
The objective of this paper is precisely to present a numerical comparison for some of
them, namely, the CBS (see References [2–4]) and two versions of the subgrid scale (SGS)
method proposed in Reference [5], one similar to the Galerkin/least-squares (GLS) method (see
References [6, 7]) and fully described in Reference [8] and the other obtained after assuming
that the subscales are orthogonal to the finite element space, and presented in Reference [9].
We call the first approach algebraic SGS (ASGS) and the second orthogonal SGS stabilization
(OSS). Both these SGS methods and CBS are consistent and, at least for both ASGS and OSS,
known to converge optimally in space for simplified stationary model problems [8, 9]. The time
accuracy depends on the time integration algorithm employed, described in the following.

The idea of the CBS scheme is to stabilize convection by using a finite difference discretization
along the characteristics, and to rely on the stabilizing effect on the pressure of a classical split-
ting technique. On the other hand, the SGS methods provide control on the element residual of
the momentum equation, which allows us to stabilize both convection and the pressure interpola-
tion. In the case of transient problems, the SGS methods are usually combined with a space–time
finite element formulation (see, e.g. Reference [10]), and this is what we will do here.

It is not the purpose of this paper to motivate the different methods. The theoretical compar-
ison between CBS and ASGS was done in Reference [11] (there, the GLS method was taken as
a reference instead of ASGS, but both are similar for our comparison purposes). This work can
be understood as a complement to Reference [11], in the sense that it contains the numerical
comparison that was not presented there. Therefore, the different formulations will be simply
described and then the numerical examples presented. The CBS scheme used for the solution
of problems presented in Section 3 makes use of a fully explicit artificial compressibility form
described in References [12, 13].

2. CBS AND SGS METHODS

2.1. The characteristic-based splitting (CBS) method

The CBS method is based on a discretization of the time derivative in the momentum equation
along the characteristics and a classical pressure splitting. Let us see how to apply these two
numerical ingredients.
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Consider a uniform partition of [0, T ] into time intervals of equal size �t . Suppose now that
we have the solution at time tn = n�t and we want to compute it at time tn+1 = tn+�t . Denoting
by a superscript the time step level and treating the discretization along the characteristics
explicitly, the time discretized problem is

1

�t
(un+1 − un) + un+1/2 · ∇un+1−� − ��un+1/2 + ∇pn+1/2 − fn+1/2

− (2� − 1)
�t

2
un · ∇(un · ∇un − ��un + ∇pn − fn) = 0 (3)

∇ · un+1 = 0 (4)

where tn + ��t is the time at which the discretization along the characteristics is done, with
1/2 < � � 1. This discretized problem is obtained by using the Crank–Nicolson discretization
of the total time derivative. However, there is also the possibility of using an explicit scheme,
treating only the pressure implicitly or using an artificial compressibility method to allow its
explicit treatment, as explained in Reference [12]. This possibility is used in the numerical
examples.

We may interpret (3)–(4) as the time discretization of problem (1)–(2) plus the introduction
of the term −�cgun · ∇Rn, where

�cg := (2� − 1)
�t

2
(5)

Rn := un · ∇un − ��un + ∇pn − fn (6)

The next ingredient of the CBS algorithm is a fractional step method to segregate the pressure
from the velocity calculation, in the spirit of the classical projection method [14, 15].

Let us consider a simplified, fully implicit first-order version of problem (3)–(4) split as
follows:

1

�t
(ûn+1 − un) + ûn+1 · ∇ûn+1 − ��ûn+1 + �′∇pn − gn+1 = 0 (7)

1

�t
(un+1 − ûn+1) + ∇pn+1 − �′∇pn = 0 (8)

∇ · un+1 = 0 (9)

where ûn+1 is an intermediate unknown, �′ a numerical parameter and gn+1 :=fn+1 +
�cgun · ∇Rn. We will proceed here very formally, assuming that the same boundary condi-
tions can be applied for ûn+1 and the end-of-step velocity un+1.

We will not explore here the stabilization mechanism identified in Reference [2], but rather
the approach noted in Reference [16]. The difference between both points of view is that while
in Reference [2] we analyse the problem for the end-of-step velocity, in Reference [16] the
author points out the stabilized problem of which the intermediate velocity is solution. Here,
we pursue this viewpoint.
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The splitting error introduced in (7)–(9) comes from the fact that the viscous and the
convective terms are computed with ûn+1 instead of un+1. This error is of second order if
�′ = 1 and of first order otherwise.

It is interesting to eliminate the end-of-step velocity at time step n, un, from (7) using (8)
evaluated at time step n, and also un+1 from (9) using (8) at time step n + 1. This yields

1

�t
(ûn+1 − ûn) + ûn+1 · ∇ûn+1 − ��ûn+1 + (1 + �′)∇pn − �′∇pn−1 − ĝn+1 = 0 (10)

∇ · ûn+1 − �t(�pn+1 − �′�pn) = 0 (11)

where the stabilizing term in ĝ is evaluated with ûn instead of un, which implies an
approximation of order O(�t2). For n = 0 we consider p−1 = p0, which is computed from
the Poisson equation obtained by taking the divergence of the original momentum equation (1)
and evaluating it at t = 0.

It is important to note that problem (10)–(11) is unconditionally stable, even though the
pressure is treated explicitly (and thus its calculation can be uncoupled from the velocity).
This follows directly from the stability of the original problem (7)–(9), proven for example in
Reference [17].

Usually, for � ∈ [0, 1] one defines pn+� := �pn+1+(1−�)pn. However, we could let � ∈ [1, 2]
and consider pn+� computed from pn and pn−1. Thus, for �′ ∈ [0, 1] we define the extrapolated
pressure (rather than the interpolated one):

p̂n+�′ := (1 + �′)pn − �′pn−1 (12)

Let us define the parameter

�s := �t(1 − �′) (13)

It allows us to replace the continuity equation by

∇ · ûn+1 − �s�pn+1 = 0 (14)

which differs from (11) by the term �t�′(�pn+1 − �pn), which is of order O(�t2).
Let Vh be the velocity finite element space, incorporating the Dirichlet boundary conditions,

and Qh the pressure space. As it is usual in the case of fractional step methods, the natural
pressure boundary condition is zero normal derivative, which is a consequence of (8) and the
fact that u and û satisfy the same boundary conditions.

Integrating by parts the term coming from the discretization along the characteristics, it
is found that the fully discrete form of problem (10)–(14) is: find ûn+1

h ∈ Vh and pn+1
h ∈ Qh

such that ∫
�

[
1

�t
(ûn+1

h − ûn
h) · vh + �∇ûn+1

h : ∇vh + (ûn+1
h · ∇ûn+1

h ) · vh − p̂
n+�′
h ∇ · vh

+ �cg(ûn
h · ∇vh) · R̂n

h − fn+1 · vh

]
d� = 0 (15)

∫
�
[qh∇ · ûn+1

h + �s∇qh · ∇pn+1
h ] d� = 0 (16)
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for all test functions vh ∈ Vh and qh ∈ Qh. The term R̂n
h is computed as indicated in (6) using

ûn
h instead of un and evaluating the second derivatives appearing in the viscous term element

by element.
Problem (15)–(16) is the CBS finite element formulation that we compare in next section

with the SGS methods. The stabilization mechanisms introduced by this formulation are now
clear: a streamline diffusion introduced by the discretization along the characteristics stabilizes
convection and the splitting introduces a pressure Laplacian, similarly to the stabilized methods
analysed for example in Reference [18]. Note that in our case this stabilizing effect disappears
if a second-order splitting is used (i.e. if �′ = 1).

2.2. Two SGS methods

Contrary to the CBS method, SGS formulations deal with convection and pressure stabilization
using the same approach. The idea of SGS methods was proposed in Reference [5], although
it is inherent in other numerical formulations. Our presentation differs from the one described
in this reference, especially in the approximation of the SGS (it is an extension of the method
presented in Reference [8] to the transient case).

If uh and ph are the finite element unknowns of the problem, the key idea is to approximate
u ≈ uh + ũ and p ≈ ph, that is, the velocity is approximated by its finite element component
plus an additional term that we call SGS or subscale.

As in the case of the CBS method, we will consider a simple first-order scheme. We call
un+1 ≈ un+1∗ := un+1

h +ũn+1 and pn+1 ≈ pn+1
h the velocity and the pressure at tn+1. Considering

the spatial interpolation, we assume that un+1
h and pn+1

h are constructed using the standard
finite element interpolation. In particular, equal velocity–pressure interpolation is possible.

The important point is the behaviour assumed for ũn+1. We assume that it vanishes on the
interelement boundaries, that is, it is a bubble-like function [19, 20]. However, contrary to what
is commonly done, we do not assume any particular behaviour of ũn+1 within the element
domains. We will show later on how to approximate it.

If in the time discrete problem u is replaced by un+1∗ := un+1
h + ũn+1, p is replaced by pn+1

h ,
the terms involving ũn+1 are integrated by parts, and the test functions are taken in the finite
element space, one gets

�t

∫
�
[�∇un+1

h : ∇vh + (un+1
h · ∇un+1

h ) · vh − pn+1
h ∇ · vh + qh∇ · un+1

h − fn+1 · vh] d�

+
∫

�
[un+1

h − un
h] · vh d� − �t

∫
�

ũn+1 · (��hvh + un+1
h · ∇vh + ∇qh) d� = 0 (17)

where the notation �h is used to indicate that the Laplacian needs to be evaluated element by
element. Equation (17) must hold for all test functions vh and qh in their corresponding finite
element spaces.

The equation for the subscales ũn+1 is obtained by taking the velocity test function in its
space and q = 0. The next step is to model the resulting equation. A possibility is to take [8, 9]

ũn+1 = �sgs[fn+1 − (−��un+1
h + un+1

h · ∇un+1
h + ∇pn+1

h )] = −�sgsR
n+1
h (18)
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where �sgs is a numerical parameter and Rn+1
h is the residual defined in (6) evaluated with

un+1
h . This is what we call algebraic approximation to the subscales. If, furthermore, we impose

the subscales to be orthogonal to the finite element space, (18) has to be replaced by

ũn+1 = −�sgsP
⊥
h Rn+1

h = −�sgs(R
n+1
h − Ph(R

n+1
h )) (19)

where Ph is the projection onto the finite element space. Since in this case, the subscales are
orthogonal to the finite element space, we call this approach orthogonal subscales stabilization
(OSS). The advantage of this approach is discussed in Reference [9]. From the accuracy point
of view, it is less diffusive than the ASGS approach and yields better resolution of sharp
gradients of the unknowns.

With all the approximations introduced heretofore, the final discrete problem to be solved
for un+1

h and pn+1
h is

∫
�

[
1

�t
(un+1

h − un
h) · vh + �∇un+1

h : ∇vh + (un+1
h · ∇un+1

h ) · vh − pn+1
h ∇ · vh

+ �sgs(��hvh + un+1
h · ∇vh) · Rn+1

h − fn+1 · vh

]
d� = 0 (20)

∫
�
[qh∇ · un+1

h + �sgs∇qh · Rn+1
h ] d� = 0 (21)

with Rn+1
h replaced by P ⊥

h Rn+1
h for the OSS method.

2.3. Comparison of CBS and ASGS

We are now in a position to compare the CBS and ASGS formulations, given, respectively, by
equations (15)–(16) and (20)–(21) (similar remarks could be applied to the OSS method). The
differences between both methods are the following:

• The pressure gradient in the CBS method is extrapolated from values of the pressure in
previous time steps. This does not affect the stabilization mechanism of the method, but
only its implementation: it is possible to solve for the velocity first and to compute the
pressure afterwards.

• The stabilization of the convective term is achieved in both cases through the introduction
of streamline diffusion. The stabilizing terms are

CBS: �cg(ûn
h · ∇vh) · R̂n

h

ASGS: �sgs(��hvh + un+1
h · ∇vh) · Rn+1

h

Except for the time level where the residual is evaluated (which is irrelevant for our
discussion) and the viscous operator applied to the test function for the ASGS method
(which is zero for linear elements) we see that both methods introduce the same amount
of streamline diffusion if we identify �sgs = �cg := (2� − 1)�t/2. Remember that � defines
the position along the characteristics at which the equations are discretized in time.
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• Pressure is stabilized in both cases through the introduction of a pressure-Laplacian. For
the CBS method, this is what is directly introduced, whereas for the ASGS formulation
this term is part of the weighting of the element residual:

CBS: �s∇qh · ∇pn+1
h

ASGS: �sgs∇qh · (−��un+1
h + un+1

h · ∇un+1
h + ∇pn+1

h − fn+1)

Remember that �s is given by (13) and it is not necessarily equal to �cg.

From this comparison we see that, even though the CBS and the ASGS methods start from
different motivations, they have very similar stabilizing effects, both for convection and for
pressure interpolation.

3. NUMERICAL RESULTS

In this section, we present the results of three classical numerical experiments we have
performed using the stabilized formulations described in this paper. The goal is to compare the
CBS method with the ASGS and OSS methods. The first two examples are steady-state cases,
whereas the third is a transient problem.

3.1. Cavity flow

This benchmark test case consists in the prediction of various vortices inside the two-dimensional
cavity � = ]0, 1[ × ]0, 1[ when a velocity ux = 1, uy = 0 is prescribed along the lid y = 1. Three
Reynolds numbers have been analysed: 400, 1000 and 5000.

The computational domain has been discretized using three meshes whose sizes are given
in Table I. All three meshes have been refined near the boundaries and are made of linear
triangular elements.

The general streamline and pressure pattern for Reynolds number 5000 obtained with mesh
unstructured 1 and the OSS method is shown in Figure 1.

To determine the accuracy of the numerical results we have compared them with those
presented in Reference [21], which were obtained using a very fine grid and have become
a standard reference. The comparison of the x and y velocity profiles along the cavity
mid-sections x = 0.5 and y = 0.5 are shown in Figures 2–5. In all the cases, the time step
has been chosen equal to the critical one determined by an explicit treatment of the viscous
and convective terms (global time stepping is used). This is necessary for the CBS scheme,
but used only for comparison in the case of SGS methods.

Table I. Meshes used for the cavity flow.

Mesh Npoin Nelem

Structured 1521 2888
Unstructured 1 5515 10 596
Unstructured 2 2929 5656
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Figure 1. Streamline and pressure pattern for the cavity flow problem at Reynolds 5000 using
the unstructured mesh 1 and the OSS method.
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Figure 2. Velocity profiles along vertical and horizontal sections for a cavity flow at Reynolds
1000 using the unstructured mesh 2.
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Figure 3. Velocity profiles along vertical and horizontal sections for a cavity flow at Reynolds
5000 using the structured mesh.

It is observed from these figures that all methods lead to good results. The major differences
are found for the case Re = 5000 (results for Re = 400 are not shown, since all methods give
very similar answers). In the case of the structured mesh, the CBS scheme seems to perform
better (results are closer to those of Reference [21]), whereas for the coarse unstructured mesh
the best results are obtained with the OSS method. Thus, no conclusive comment can be made
on which method performs best in this problem.

Another aspect that is numerically relevant is the way the solution evolves to the steady
state. This gives an indication of the amount of numerical dissipation of the different methods.
Figure 6 provides this comparison. It gives the norm of the difference in velocities from time
step n to n + 1 normalized by the norm of the velocity at time step n + 1. It is observed
that ASGS and OSS display a very similar behaviour, whereas CBS is less monotone. This
is possibly due to the implicit treatment of convection and viscosity in SGS methods and
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Figure 4. Velocity profiles along vertical and horizontal sections for a cavity flow at Reynolds
5000 using the unstructured mesh 1.

the explicit one in CBS. For the coarse unstructured mesh, CBS fails to drop the residual
below 10−3.

3.2. Flow over a backward-facing step

This second example is the classical benchmark of a flow over a backward-facing step. The
length of the inflow channel is 4 and its width 2, the total length of the computational domain
40 and the width of the channel 3. The experimental parabolic velocity profile presented in
Reference [22] is prescribed on the inflow, whereas the no-slip condition is prescribed on the
rest of the walls except the outflow, where a zero traction condition is fixed. The Reynolds
number, computed with a velocity 1 and the step height (1) is 229.

The computational domain has been discretized using two unstructured meshes. The first one,
referred to as mesh 1 in the following, consists of 8662 linear triangles and 4656 nodal points,
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Figure 5. Velocity profiles along vertical and horizontal sections for a cavity flow at Reynolds
5000 using the unstructured mesh 2.

whereas the second, which we will call mesh 2, consists of 22 257 linear triangles and 11 659
nodal points. Both are refined near the boundaries. Again, the time step has been chosen equal
to the critical one determined by an explicit treatment of the viscous and convective terms.

Figure 7 shows the pressure contours and the streamlines using mesh 2 and the OSS method.
It is observed that in the region where the pressure is almost constant there are some localized
pressure oscillations (for non-stabilized schemes these oscillations are global) which can be
removed by increasing the stabilization parameter or computing it locally. We have preferred
to take it constant all over the mesh and equal to one half of the critical time step to
maintain the analogy between SGS schemes and CBS (which does not show these small local
oscillations).

Figure 8 compares the horizontal velocity profiles along two vertical sections using mesh
1 with the experimental values obtained by Denham and Patrik [22]. For mesh 2 the results
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Figure 6. Convergence to the steady state for the flow inside a wall driven cavity at Re = 400
(left) and Re = 5000 (right) using the structured mesh (top), the unstructured mesh 1 (middle)

and the unstructured mesh 2 (bottom).

are very similar to those obtained with mesh 1 and differences between the three methods are
even smaller than those shown.

Figure 9 shows the convergence towards the steady state.
The conclusions from this example are the same as in the previous one, namely, the three

methods considered yield very similar numerical answers. This confirms the similarity in the
stabilization mechanisms identified for the three methods.
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Figure 7. Streamline and pressure pattern for the BFS flow problem at Reynolds 229 using
mesh 2 and the ASGS method.
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Figure 8. Horizontal velocity profiles along two vertical sections at x = 6.11 (top) and 8.17
(bottom), for a BFS flow at Re = 229 using mesh 1.
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Figure 9. Convergence to the steady state for a BFS flow at Re = 229
using mesh 1 (top) and mesh 2 (bottom).

3.3. Flow over a cylinder

This example involves the flow past a cylinder, another widely solved benchmark problem. The
computational domain is �̄ = [0, 16] × [0, 8]\D, with the cylinder D of diameter 1 and centred
at (4, 4). The velocity at x = 0 is prescribed to (1, 0), whereas at y = 0 and 8, the y-velocity
component is prescribed to 0 and the x component is left free. The outflow (where both the
x and y components are free) is x = 16. The Reynolds number is 100, based on the cylinder
diameter and the prescribed inflow velocity. The finite element mesh employed consists of
19 650 linear triangles, with 9988 nodal points, being refined near and behind the cylinder.

Figure 10 shows the streamlines and pressure pattern obtained using the OSS method.
The temporal evolution of the drag and lift coefficients, CD and CL, as well as the evolution

of the vertical velocity at the midpoint of the output section are shown in Figures 11 and 12.
The differences using the three methods in this example are more important than in the
previous cases. The reason is due to that the CBS scheme employed is first-order accurate in
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Figure 10. Streamline and pressure pattern for the flow over a cylinder
at Reynolds 100 using the OSS method.

time (remember that for second-order splitting the stabilizing effect on the pressure disappears),
whereas for OSS and ASGS, the second-order Crank–Nicolson scheme has been used. This
leads to a more dissipative behaviour encountered for the CBS method, with smaller amplitude
and frequency. Concerning the phase difference, it is due to very small frequency discrepancies
(observe that the time window starts at t = 155). Comparing ASGS and OSS, it is seen that the
former is more dissipative. For a more detailed comparison of both methods, see Reference [9].

3.4. CPU time comparison

The analysis of the computational efficiency of the different schemes can be strongly biased
depending on the criteria one uses to compare them. The main difficulty arises from the fact
that OSS and ASGS are implicit and CBS is explicit.

For the implicit schemes, one can use a bigger time step than the critical one. But if this
is done, the results presented in Figures 6 and 9 would have no sense. Therefore, despite the
fact that OSS and ASGS are implicit, we forced them to run with a time step size equal to
the critical one. The results are shown in Table II.

For the cylinder problem, the CBS method was used with a dual time stepping technique
that enabled the time step size to be 0.1666 s (approximately 50 times the critical time step).
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Figure 11. CD and CL for a flow around a cylinder at Re = 100.
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Figure 12. Vertical velocity for a flow around a cylinder at Re = 100
at the midpoint of the output section.
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Table II. CPU time per time step normalized by the CPU time of an explicit update.

Mesh CBS ASGSmat OSSmat ASGSsol OSSsol

Cavity
Struct. 111.3 938.9 905.9 4561.3 4594.3
Unstruct. 1 121.5 839.6 805.3 19 993.8 20 111.3
Unstruct. 2 117.1 1094.0 1150.9 23 656.1 23 599.1

Step
Mesh 1 118.3 717.3 677.8 1657.8 1697.1
Mesh 2 119.3 464.4 440.4 4184.2 4235.2

Cylinder 5.79e5 7.66e2 6.90e2 1.01e4 1.02e4

The same time step size was used for the OSS and ASGS methods. The problem was run for
1201 steps that correspond to 200 s.

In order to make the CPU times comparable although they were run on different computers
they are non-dimensionalized dividing by a reference time. The reference time is obtained as
the time needed to update the velocity in an explicit scheme once the RHS is known.

For the cavity and step problems, a direct solver was used for the ASGS and OSS methods.
For the cylinder, the linear system was solved using a GMRES solver, allowing a maximum
of 100 iterations with a tolerance of 10−8 and a Krylov dimension of 30.

For the ASGS and the OSS methods, the total CPU time is the sum of the time invested to
build up the matrix and right-hand side of the algebraic system and the time needed to solve
it. Clearly, for the two first examples, cavity and step, the CBS method is much more efficient
(recall though that much larger time steps could have been used for the implicit ASGS and
OSS methods). However, the dual time-stepping technique used in the CBS method to allow
time steps larger than the critical one is much less efficient than an iterative scheme for a
truly implicit solver (although the CBS scheme could be made much faster by allowing certain
diffusive effects). This is a general tendency that can be corrected either by using an implicit
version of CBS (and using also an iterative scheme) or by using acceleration techniques in the
dual time stepping. The analysis of both points is beyond the interest of this comparison.

4. CONCLUSIONS

In this paper, we have compared the CBS and two SGS formulations to solve the incompressible
Navier–Stokes equations. The presentation has highlighted the stabilization mechanisms of these
methods, showing that they are in fact very similar, both for the stabilization of the convective
term and the pressure interpolation.

The numerical comparison yields no conclusive remarks, except that all methods perform
very similarly. CBS is better in some cases, whereas SGS schemes perform better in others (in
fact, OSS is in general more accurate than ASGS, see Reference [9]). Concerning the computer
cost, for time steps of the order of the critical one it is certainly preferable to use CBS (or
any other scheme with an explicit treatment of convection and viscous terms), but if the time
step to be used is large, it seems better to use directly an implicit formulation.
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