357 research outputs found

    STRIDE LENGTH MANIPULATION IN YOUNG AND OLD ADULTS DURING LEVEL WALKING

    Get PDF
    Physiological and neurological changes with healthy aging cause old adults to alter biomechanical gait strategies. Mechanical plasticity is an ambulatory strategy in which old adults rely on proximal musculature in compensation for decreased distal muscle functioning. Since stride length has been shown to decrease with age, mechanical plasticity may be directly related to the control of stride length. It was hypothesized that old adults rely on hip joint torque and power more than knee or ankle torques and powers when manipulating stride length. It was also hypothesized that young adults rely on even distribution of lower-extremity joint torques and powers when manipulating stride length. The purpose of this study was to identify the relationship between lower extremity joint torques and powers and stride length in old and young adults while walking at an identical velocity.  Healthy young (ages 18-27) and old adults (ages 70-85) were instructed to walk across a level walkway at 1.50 m/sec ± 5%. Twenty strides ranging from each subject's shortest to longest strides were collected per subject. Stride length was manipulated from trial to trial to ensure that each subject had a relatively even distribution of stride lengths from shortest to longest strides. Ground reaction force and joint kinematics were collected and analyzed with inverse dynamics. Pearson product correlation analyses were used to identify relationships among individual joint torque and power variables and stride length. Stepwise regression analyses were used for a comprehensive view of all lower-extremity joint torques and powers.  Means of preferred and maximal stride lengths were shorter for old adults than young adults. Correlations provided from averaging individual subject correlations within each group resulted in strong predictability of stride length. This method of evaluating how old and young adults manipulate stride length more accurately identified how young and old subjects manipulated stride length. These results indicated that knee and ankle torques and powers were stronger predictors of stride length than hip torque and power. Also, all young adult correlations were stronger than corresponding old adult correlations. For example, young adult knee impulse (r=0.864, r[superscript]2=0.746, <0.05) had a stronger relationship with stride length than old adult knee impulse (r=0.837, r[superscript]2=0.701, <0.05). Stepwise regression analyses similarly suggested high predictive power of distal joint function. According to these regressions, hip variables were not predictive of young adult stride lengths while hip impulse, following ankle and knee impulse, was predictive of old adult stride lengths.   This study suggests young and old adults manipulate stride by altering knee and ankle muscle functioning more than by altering hip muscle function. These data did not support the proposed hypotheses. Stronger correlations for young adults suggest these individuals can more accurately control stride length with knee and ankle torques than old adults.  M.S

    Gene profiling of maternal hepatic adaptations to pregnancy

    Get PDF
    BACKGROUND: Maternal metabolic demands change dramatically during the course of gestation and must be co-ordinated with the needs of the developing placenta and fetus. The liver is critically involved in metabolism and other important functions. However, maternal hepatic adjustments to pregnancy are poorly understood. AIM: The aim of the study was to evaluate the influences of pregnancy on the maternal liver growth and gene expression profile. METHODS: Holtzman Sprague-Dawley rats were mated and sacrificed at various stages of gestation and post-partum. The maternal livers were analysed in gravimetric response, DNA content by PicoGreen dsDNA quantitation reagent, hepatocyte ploidy by flow cytometry and hepatocyte proliferation by ki-67 immunostaining. Gene expression profiling of non-pregnant and gestation d18.5 maternal hepatic tissue was analysed using a DNA microarray approach and partially verified by northern blot or quantitative real-time PCR analysis. RESULTS: During pregnancy, the liver exhibited approximately an 80% increase in size, proportional to the increase in body weight of the pregnant animals. The pregnancy-induced hepatomegaly was a physiological event of liver growth manifested by increases in maternal hepatic DNA content and hepatocyte proliferation. Pregnancy did not affect hepatocyte polyploidization. Pregnancy-dependent changes in hepatic expression were noted for a number of genes, including those associated with cell proliferation, cytokine signalling, liver regeneration and metabolism. CONCLUSIONS: The metabolic demands of pregnancy cause marked adjustments in maternal liver physiology. Central to these adjustments are an expansion in hepatic capacity and changes in hepatic gene expression. Our findings provide insights into pregnancy-dependent hepatic adaptations

    Branching of the Falkner-Skan solutions for λ < 0

    Get PDF
    The Falkner-Skan equation f'" + ff" + λ(1 - f'^2) = 0, f(0) = f'(0) = 0, is discussed for λ < 0. Two types of problems, one with f'(∞) = 1 and another with f'(∞) = -1, are considered. For λ = 0- a close relation between these two types is found. For λ < -1 both types of problem allow multiple solutions which may be distinguished by an integer N denoting the number of zeros of f' - 1. The numerical results indicate that the solution branches with f'(∞) = 1 and those with f'(∞) = -1 tend towards a common limit curve as N increases indefinitely. Finally a periodic solution, existing for λ < -1, is presented.

    Examination of the cytotoxic and embryotoxic potential and underlying mechanisms of next-generation synthetic trioxolane and tetraoxane antimalarials

    Get PDF
    Semisynthetic artemisinin-based therapies are the first-line treatment for P. falciparum malaria, but next-generation synthetic drug candidates are urgently required to improve availability and respond to the emergence of artemisinin-resistant parasites. Artemisinins are embryotoxic in animal models and induce apoptosis in sensitive mammalian cells. Understanding the cytotoxic propensities of antimalarial drug candidates is crucial to their successful development and utilization. Here, we demonstrate that, similarly to the model artemisinin artesunate (ARS), a synthetic tetraoxane drug candidate (RKA182) and a trioxolane equivalent (FBEG100) induce embryotoxicity and depletion of primitive erythroblasts in a rodent model. We also show that RKA182, FBEG100 and ARS are cytotoxic toward a panel of established and primary human cell lines, with caspase-dependent apoptosis and caspase-independent necrosis underlying the induction of cell death. Although the toxic effects of RKA182 and FBEG100 proceed more rapidly and are relatively less cell-selective than that of ARS, all three compounds are shown to be dependent upon heme, iron and oxidative stress for their ability to induce cell death. However, in contrast to previously studied artemisinins, the toxicity of RKA182 and FBEG100 is shown to be independent of general chemical decomposition. Although tetraoxanes and trioxolanes have shown promise as next-generation antimalarials, the data described here indicate that adverse effects associated with artemisinins, including embryotoxicity, cannot be ruled out with these novel compounds, and a full understanding of their toxicological actions will be central to the continuing design and development of safe and effective drug candidates which could prove important in the fight against malaria

    Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models

    Get PDF
    Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI

    Public health and valorization of genome-based technologies: a new model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The success rate of timely translation of genome-based technologies to commercially feasible products/services with applicability in health care systems is significantly low. We identified both industry and scientists neglect health policy aspects when commercializing their technology, more specifically, Public Health Assessment Tools (PHAT) and early on involvement of decision makers through which market authorization and reimbursements are dependent. While Technology Transfer (TT) aims to facilitate translation of ideas into products, Health Technology Assessment, one component of PHAT, for example, facilitates translation of products/processes into healthcare services and eventually comes up with recommendations for decision makers. We aim to propose a new model of valorization to optimize integration of genome-based technologies into the healthcare system.</p> <p>Methods</p> <p>The method used to develop our model is an adapted version of the Fish Trap Model and the Basic Design Cycle.</p> <p>Results</p> <p>We found although different, similarities exist between TT and PHAT. Realizing the potential of being mutually beneficial justified our proposal of their relative parallel initiation. We observed that the Public Health Genomics Wheel should be included in this relative parallel activity to ensure all societal/policy aspects are dealt with preemptively by both stakeholders. On further analysis, we found out this whole process is dependent on the Value of Information. As a result, we present our LAL (Learning Adapting Leveling) model which proposes, based on market demand; TT and PHAT by consultation/bi-lateral communication should advocate for relevant technologies. This can be achieved by public-private partnerships (PPPs). These widely defined PPPs create the innovation network which is a developing, consultative/collaborative-networking platform between TT and PHAT. This network has iterations and requires learning, assimilating and using knowledge developed and is called absorption capacity. We hypothesize that the higher absorption capacity, higher success possibility. Our model however does not address the phasing out of technology although we believe the same model can be used to simultaneously phase out a technology.</p> <p>Conclusions</p> <p>This model proposes to facilitate optimization/decrease the timeframe of integration in healthcare. It also helps industry and researchers to come to a strategic decision at an early stage, about technology being developed thus, saving on resources, hence minimizing failures.</p

    Involvement of the p62/NRF2 signal transduction pathway on erythrophagocytosis

    Get PDF
    This deposit is composed by the main article plus the supplementary materials of the publication.Erythrophagocytosis, the phagocytic removal of damaged red blood cells (RBC), and subsequent phagolysosome biogenesis are important processes in iron/heme metabolism and homeostasis. Phagolysosome biogenesis implies the interaction of nascent phagosomes with endocytic compartments and also autophagy effectors. Here, we report that besides recruitment of microtubule-associated protein-1-light chain 3 (LC3), additional autophagy machinery such as sequestosome 1 (p62) is also acquired by single-membrane phagosomes at very early stages of the phagocytic process and that its acquisition is very important to the outcome of the process. In bone marrow-derived macrophages (BMDM) silenced for p62, RBC degradation is inhibited. P62, is also required for nuclear translocation and activation of the transcription factor Nuclear factor E2-related Factor 2 (NRF2) during erythrophagocytosis. Deletion of the Nrf2 allele reduces p62 expression and compromises RBC degradation. In conclusion, we reveal that erythrophagocytosis relies on an interplay between p62 and NRF2, potentially acting as protective mechanism to maintain reactive oxygen species at basal levels and preserve macrophage homeostasis.Fundação para a Ciência e a Tecnologia grants: (HMSP-ICT/0024/2010, UID/Multi/04462/2013, SFRH/BD/62197/2009, SFRH/BD/90258/2012, SFRH /BD/51877/2012, SFRH/BD/52293/2013, PTDC/SAU-TOX/116627/2010, HMSP-ICT/0022/2010 ); European Union FEDER support: (COMPETE, QREN, PT2020 Partnership Agreement), ERC grant: (ERC-2011-AdG 294709-DAMAGECONTROL).info:eu-repo/semantics/publishedVersio
    corecore