39 research outputs found

    Evolution of Axis Specification Mechanisms in Jawed Vertebrates: Insights from a Chondrichthyan

    Get PDF
    The genetic mechanisms that control the establishment of early polarities and their link with embryonic axis specification and patterning seem to substantially diverge across vertebrates. In amphibians and teleosts, the establishment of an early dorso-ventral polarity determines both the site of axis formation and its rostro-caudal orientation. In contrast, amniotes retain a considerable plasticity for their site of axis formation until blastula stages and rely on signals secreted by extraembryonic tissues, which have no clear equivalents in the former, for the establishment of their rostro-caudal pattern. The rationale for these differences remains unknown. Through detailed expression analyses of key development genes in a chondrichthyan, the dogfish Scyliorhinus canicula, we have reconstructed the ancestral pattern of axis specification in jawed vertebrates. We show that the dogfish displays compelling similarities with amniotes at blastula and early gastrula stages, including the presence of clear homologs of the hypoblast and extraembryonic ectoderm. In the ancestral state, these territories are specified at opposite poles of an early axis of bilateral symmetry, homologous to the dorso-ventral axis of amphibians or teleosts, and aligned with the later forming embryonic axis, from head to tail. Comparisons with amniotes suggest that a dorsal expansion of extraembryonic ectoderm, resulting in an apparently radial symmetry at late blastula stages, has taken place in their lineage. The synthesis of these results with those of functional analyses in model organisms supports an evolutionary link between the dorso-ventral polarity of amphibians and teleosts and the embryonic-extraembryonic organisation of amniotes. It leads to a general model of axis specification in gnathostomes, which provides a comparative framework for a reassessment of conservations both among vertebrates and with more distant metazoans

    The Enhancer of split transcription factor Her8a is a novel dimerisation partner for Her3 that controls anterior hindbrain neurogenesis in zebrafish

    Get PDF
    International audienceBACKGROUND: Neurogenesis control and the prevention of premature differentiation in the vertebrate embryo are crucial processes, allowing the formation of late-born cell types and ensuring the correct shape and cytoarchitecture of the brain. Members of the Hairy/Enhancer of Split (Hairy/E(spl)) family of bHLH-Orange transcription factors, such as zebrafish Her3, 5, 9 and 11, are implicated in the local inhibition of neurogenesis to maintain progenitor pools within the early neural plate. To better understand how these factors exert their inhibitory function, we aimed to isolate some of their functional interactors. RESULTS: We used a yeast two-hybrid screen with Her5 as bait and recovered a novel zebrafish Hairy/E(spl) factor--Her8a. Using phylogenetic and synteny analyses, we demonstrate that her8a evolved from an ancient duplicate of Hes6 that was recently lost in the mammalian lineage. We show that her8a is expressed across the mid- and anterior hindbrain from the start of segmentation. Through knockdown and misexpression experiments, we demonstrate that Her8a is a negative regulator of neurogenesis and plays an essential role in generating progenitor pools within rhombomeres 2 and 4--a role resembling that of Her3. Her8a co-purifies with Her3, suggesting that Her8a-Her3 heterodimers may be relevant in this domain of the neural plate, where both proteins are co-expressed. Finally, we demonstrate that her8a expression is independent of Notch signaling at the early neural plate stage but that SoxB factors play a role in its expression, linking patterning information to neurogenesis control. Overall, the regulation and function of Her8a differ strikingly from those of its closest relative in other vertebrates--the Hes6-like proteins. CONCLUSIONS: Our results characterize the phylogeny, expression and functional interactions involving a new Her factor, Her8a, and highlight the complex interplay of E(spl) proteins that generates the neurogenesis pattern of the zebrafish early neural plate

    Molecular Characterization of the Gastrula in the Turtle Emys orbicularis: An Evolutionary Perspective on Gastrulation

    Get PDF
    Due to the presence of a blastopore as in amphibians, the turtle has been suggested to exemplify a transition form from an amphibian- to an avian-type gastrulation pattern. In order to test this hypothesis and gain insight into the emergence of the unique characteristics of amniotes during gastrulation, we have performed the first molecular characterization of the gastrula in a reptile, the turtle Emys orbicularis. The study of Brachyury, Lim1, Otx2 and Otx5 expression patterns points to a highly conserved dynamic of expression with amniote model organisms and makes it possible to identify the site of mesoderm internalization, which is a long-standing issue in reptiles. Analysis of Brachyury expression also highlights the presence of two distinct phases, less easily recognizable in model organisms and respectively characterized by an early ring-shaped and a later bilateral symmetrical territory. Systematic comparisons with tetrapod model organisms lead to new insights into the relationships of the blastopore/blastoporal plate system shared by all reptiles, with the blastopore of amphibians and the primitive streak of birds and mammals. The biphasic Brachyury expression pattern is also consistent with recent models of emergence of bilateral symmetry, which raises the question of its evolutionary significance

    Molecular Characterization of the Gastrula in the Turtle Emys orbicularis: An Evolutionary Perspective on Gastrulation

    Get PDF
    Due to the presence of a blastopore as in amphibians, the turtle has been suggested to exemplify a transition form from an amphibian- to an avian-type gastrulation pattern. In order to test this hypothesis and gain insight into the emergence of the unique characteristics of amniotes during gastrulation, we have performed the first molecular characterization of the gastrula in a reptile, the turtle Emys orbicularis. The study of Brachyury, Lim1, Otx2 and Otx5 expression patterns points to a highly conserved dynamic of expression with amniote model organisms and makes it possible to identify the site of mesoderm internalization, which is a long-standing issue in reptiles. Analysis of Brachyury expression also highlights the presence of two distinct phases, less easily recognizable in model organisms and respectively characterized by an early ring-shaped and a later bilateral symmetrical territory. Systematic comparisons with tetrapod model organisms lead to new insights into the relationships of the blastopore/blastoporal plate system shared by all reptiles, with the blastopore of amphibians and the primitive streak of birds and mammals. The biphasic Brachyury expression pattern is also consistent with recent models of emergence of bilateral symmetry, which raises the question of its evolutionary significance

    Local Enhancement Promotes Cockroach Feeding Aggregations

    Get PDF
    Communication and learning from each other are part of the success of animal societies. Social insects invest considerable effort into signalling to their nestmates the locations of the most profitable resources in their environment. Growing evidence also indicates that insects glean such information through cues inadvertently provided by their conspecifics. Here, we investigate social information use in the foraging decisions by gregarious cockroaches (Blattella germanica L.). Individual cockroaches given a simultaneous choice in a Y-olfactometer between the odour of feeding conspecifics and the mixed odour of food plus non-feeding conspecifics showed a preference for the arm scented with the odour of feeding conspecifics. Social information (the presence of feeding conspecifics) was produced by cockroaches of all age classes and perceived at short distance in the olfactometer arms, suggesting the use of inadvertently provided cues rather than signals. We discuss the nature of these cues and the role of local enhancement (the selection of a location based on cues associated with the presence of conspecifics) in the formation of feeding aggregations in B. germanica. Similar cue-mediated recruitments could underpin a wide range of collective behaviours in group-living insects

    Origine et diversification des mécanismes de mise en place des polarités chez les vertébrés (une approche comparative du développement précoce)

    No full text
    Les mécanismes génétiques contrôlant l établissement des premières polarités et la spécification des axes embryonnaires apparaissent très divergents entre amphibiens et téléostéens d une part, amniotes d autre part. Afin de mieux comprendre le lien entre ces espèces, nous avons mis en œuvre une approche évolution-développement visant à préciser le patron ancestral chez deux groupes clefs, les amniotes et les gnathostomes. La stratégie choisie a reposé sur des caractérisations moléculaires du développement précoce chez deux espèces principalement choisies pour leur position phylogénétique, la roussette Scyliorhinus canicula et la tortue Emys orbicularis. Les résultats obtenus chez la tortue permettent de préciser le site d internalisation du mésoderme chez cette espèce, mettant en évidence de fortes similitudes mais également des différences notables avec le poulet. La caractérisation moléculaire exhaustive effectuée chez la roussette met en évidence des similitudes avec les amphibiens et les téléostéens, et de façon plus inattendue, avec les amniotes. Elle conduit à un modèle synthétique de la spécification des axes embryonnaires chez les gnathostomes. Les perspectives ouvertes par ce travail visent à tester les prédictions de ce modèle, en précisant en particulier l origine et l évolution des tissus extra-embryonnaires chez les vertébrés. Elles reposent sur une extension des caractérisations moléculaires et la mise en oeuvre d approches fonctionnelles chez la roussette (traitements pharmacologiques, transgenèse hétérologue de séquences génomiques de roussette).ORLEANS-BU Sciences (452342104) / SudocSudocFranceF
    corecore