12 research outputs found

    Targeting of the Arf-GEF GBF1 to lipid droplets and Golgi membranes

    No full text
    International audienceLipid droplet metabolism and secretory pathway trafficking both require activation of the Arf1 small G protein. The spatiotemporal regulation of Arf1 activation is mediated by guanine nucleotide exchange factors (GEFs) of the GBF and BIG families, but the mechanisms of their localization to multiple sites within cells are poorly understood. Here we show that GBF1 has a lipid-binding domain (HDS1) immediately downstream of the catalytic Sec7 domain, which mediates association with both lipid droplets and Golgi membranes in cells, and with bilayer liposomes and artificial droplets in vitro. An amphipathic helix within HDS1 is necessary and sufficient for lipid binding, both in vitro and in cells. The HDS1 domain of GBF1 is stably associated with lipid droplets in cells, and the catalytic Sec7 domain inhibits this potent lipid-droplet-binding capacity. Additional sequences upstream of the Sec7 domain-HDS1 tandem are required for localization to Golgi membranes. This mechanism provides insight into crosstalk between lipid droplet function and secretory trafficking

    Fluorescence insitu hybridization of Microcystis strains producing microcystin using specific mRNA probes

    No full text
    International audienceCyanobacteria are ubiquitous micro-organisms that can produce toxic compounds, the cyanotoxins. The monitoring of such producers in the environment is of prime importance for human health. An attractive technology for such monitoring is fluorescence insitu hybridization (FISH), which allows the detection and enumeration of environmental micro-organisms. We present here the application of tyramide signal amplification fluorescence insitu hybridization (TSA-FISH) to the detection of microcystin-producing Microcystis strains. We used a 16S rRNA-specific probe, MICR3, to specifically label and observe by epifluorescence microscopy Microcystis aeruginosa strains. Using confocal laser scanning microscopy and a specific probe, MCYA, targeting the mcyA mRNA we have labelled M.aeruginosa PCC 7806, which produces microcystins. Microcystis aeruginosa PCC 7005 which does not produce microcystins is not labelled by this probe. Furthermore, we show here that this specific mRNA labelling in M.aeruginosa PCC 7806 is enhanced in cells illuminated for 1h just after a dark period of cultivation of 24h, conditions in which the mcyA gene is up regulated. The data presented here might be applicable to the monitoring of toxic Microcystis strains in the environment. Significance and Impact of the StudyCyanobacteria producing toxic compounds (cyanotoxins) are present in the environment and in water bodies. Their presence poses a threat on human and animal health. It is thus important to detect, identify and enumerate these toxic Cyanobacteria. Using tyramide signal amplification fluorescence insitu hybridization (TSA-FISH) and specific probes, with confocal laser scanning microscopy, we have specifically detected Microcystis strains producing microcystin toxins. The data presented here might be applied to the monitoring of water bodies at early stages and all along the formation of Microcystis blooms

    dJun and Vri/dNFIL3 Are Major Regulators of Cardiac Aging in Drosophila

    Get PDF
    International audienceCardiac aging is a complex process, which is influenced by both environmental and genetic factors. Deciphering the mechanisms involved in heart senescence therefore requires identifying the molecular pathways that are affected by age in controlled environmental and genetic conditions. We describe a functional genomic investigation of the genetic control of cardiac senescence in Drosophila. Molecular signatures of heart aging were identified by differential transcriptome analysis followed by a detailed bio-informatic analysis. This approach implicated the JNK/dJun pathway and the transcription factor Vri/dNFIL3 in the transcription regulatory network involved in cardiac senescence and suggested the possible involvement of oxidative stress (OS) in the aging process. To validate these predictions, we developed a new in vivo assay to analyze heart performance in various contexts of adult heart-specific gene overexpression and inactivation. We demonstrate that, as in mammals, OS plays a central role in cardiac senescence, and we show that pharmacological interventions impinging on OS slow heart senescence. These observations strengthen the idea that cardiac aging is controlled by evolutionarily conserved mechanisms, further validating Drosophila as a model to study cardiac senescence. In addition, we demonstrate that Vri, the ortholog of the vertebrate NFIL3/E4B4 transcription factor, is a major genetic regulator of cardiac aging. Vri overexpression leads to major heart dysfunctions, but its loss of function significantly reduces age-related cardiac dysfunctions. Furthermore, we unambiguously show that the JNK/AP1 pathway, the role of which in cardiac aging in mammals is controversial, is activated during cardiac aging and has a detrimental effect on cardiac senescence. This data-driven functional genomic analysis therefore led to the identification of key components of the Gene Regulatory Network of cardiac aging in Drosophila and may prompt to investigate the involvement of their counterparts in the cardiac aging process in mammals

    SET translocation is associated with increase in caspase cleaved amyloid precursor protein in CA1 of Alzheimer and Down syndrome patients.

    No full text
    Caspase cleaved amyloid precursor protein (APPcc) and SET are increased and mislocalized in the neuronal cytoplasm in Alzheimer Disease (AD) brains. Translocated SET to the cytoplasm can induce tau hyperphosphorylation. To elucidate the putative relationships between mislocalized APPcc and SET, we studied their level and distribution in the hippocampus of 5 controls, 3 Down syndrome and 10 Alzheimer patients. In Down syndrome and Alzheimer patients, APPcc and SET levels were increased in CA1 and the frequency of both localizations in the neuronal cytoplasm was high in CA1, and low in CA4. As the increase of APPcc is already present at early stages of AD, we overexpressed APPcc in CA1 and the dentate gyrus neurons of adult mice with a lentiviral construct. APPcc overexpression in CA1 and not in the dentate gyrus induced endogenous SET translocation and tau hyperphosphorylation. These data suggest that increase in APPcc in CA1 neurons could be an early event leading to the translocation of SET and the progression of AD through tau hyperphosphorylation

    A role for SOX9 in post-transcriptional processes: insights from the amphibian oocyte

    No full text
    International audienceSox9 is a member of the gene family of SOX transcription factors, which is highly conserved among vertebrates. It is involved in different developmental processes including gonadogenesis. In all amniote species examined thus far, Sox9 is expressed in the Sertoli cells of the male gonad, suggesting an evolutionarily conserved role in testis development. However, in the anamniotes, fishes and amphibians, it is also expressed in the oocyte but the significance of such an expression remains to be elucidated. Here, we have investigated the nuclear localization of the SOX9 protein in the oocyte of three amphibian species, the urodelan Pleurodeles waltl, and two anurans, Xenopus laevis and Xenopus tropicalis. We demonstrate that SOX9 is associated with ribonucleoprotein (RNP) transcripts of lampbrush chromosomes in an RNA-dependent manner. This association can be visualized by Super-resolution Structured Illumination Microscopy (SIM). Our results suggest that SOX9, known to bind DNA, also carries an additional function in the posttranscriptional processes. We also discuss the significance of the acquisition or loss of Sox9 expression in the oocyte during evolution at the transition between anamniotes and amniotes
    corecore