13 research outputs found

    Genexpressionsprofilierung von Ionenkanälen in Tiermodellen für Herz-Kreislauf-Erkrankungen des Menschen

    Get PDF
    In der vorliegenden Arbeit wurde die mögliche Regulation verschiedener Ionenkanalgene bei Herz-Kreislauf-Erkrankungen mit Hilfe von Northern Blots, der semiquantitativen RT-PCR- Technik und zum Teil durch elektrophysiologische Untersuchungen analysiert. Ziel war es, solche Gene zu identifizieren, deren mRNA-Spiegel hochreguliert oder herunterreguliert waren, da diese möglicherweise eine wichtige Rolle bei den kardiovaskulären Erkrankungen spielen könnten. Diese Untersuchungen sollten zu einem besseren Verständnis der renalen und kardialen Funktion dieser Ionenkanäle und der Pathogenese der untersuchten Krankheiten beitragen, aber auch helfen, neue Kandidatengene für diese Krankheiten zu identifizieren. Es wurden insgesamt fünf Tiermodelle mit Hypertonie, kardialer Hypertrophie, Herzinsuffizienz, Niereninsuffizienz und Vorhofflimmern untersucht. Ein Schwerpunkt dieser Untersuchungen waren die CLC-Chloridkanäle, deren kardiovaskuläre Funktionen noch wenig untersucht sind. Die Genprofile der Chloridkanäle CLC-2, CLC-3, CLC-4, CLC-5, CLC-6 und CLC-7 sowie CLC-K1 und CLC-K2 wurden in den Herzen und Nieren der folgenden Tiermodelle analysiert: (1) In spontan hypertensiven Ratten (SHR) und (2) in SH-stroke-prone-Ratten, die eine genetisch bedingte Hypertonie und Herzhypertrophie entwickeln. (3) In salz-sensitiven Dahl-Ratten, die Hypertonie und Herzhypertrophie erst nach einer salzhaltigen Diät, und (4) in Aortic-Banding-Ratten, die nach einem operativen Eingriff Bluthochdruck und kardiale Hypertrophie entwickeln. (5) Schließlich wurde noch ein Rattenmodell untersucht, in dem durch die Ligatur der Koronararterie ein Herzinfarkt induziert wurde, der letztlich zur Herzinsuffizienz führte. In keinem dieser Tiermodelle wurde jedoch eine auffällige Veränderung in der mRNA-Expression der acht untersuchten CLC-Chloridkanäle in den erkrankten Tieren im Vergleich zu den Kontrolltieren beobachtet. Die CLC-Chloridkanäle wurden ferner in einem Niereninsuffizienz-Modell untersucht, bei dem in Ratten durch Abklemmen der renalen Arterien und Venen ein akutes Nierenversagen und letztlich eine Niereninsuffizienz hervorgerufen wurde. In diesem Tiermodell war bereits eine Herunterregulation vieler anderer Ionenkanäle und Transporter beschrieben worden. In zwei unabhängigen Tierstudien wurde eine unterschiedlich starke Abnahme der mRNA-Expression für die einzelnen CLC-Chloridkanäle beobachtet. In einer weiteren Studie konnte die Behandlung von niereninsuffizienten Ratten mit einem bei Niereninsuffizienz wirksamen Inhibitor des NHE-3-Transports das Ausmaß der Reduktion einzelner CLC-Gene abschwächen. Weitere Studien mit höheren Dosen oder potenteren Substanzen sind notwendig, um diese vorläufigen Befunde zu bestätigen. Ein weiterer Schwerpunkt der vorliegenden Arbeit war die Charakterisierung der kardialen Ionenkanaldichten bei einem neuen Kaninchenmodell für Vorhofflimmern, die in Zusammenarbeit mit der Universitätsklinik Tübingen durchgeführt wurde. Das Vorhofflimmern ist eine sehr häufige Herzerkrankung bei älteren Menschen, und anhand dieses Tiermodells sollten vor allem frühe Prozesse des elektrischen Remodelings, das für das Auftreten und die Aufrechterhaltung des Vorhofflimmerns von Bedeutung ist, untersucht werden. Mit Hilfe der semiquantitativen RT-PCR-Analyse konnte in diesem Tiermodell erstmals eine Reduktion der mRNA für die Kaliumkanalgene Kv1.4, Kv4.3 und Kv1.5 sowie für die Kalziumkanalgene alpha1, CaB2a, CaB2b und CaB3 im frühem Stadium des Vorhofflimmerns nachgewiesen werden. Diese Befunde konnten die Resultate von Patch-Clamp-Messungen erklären, die gleichzeitig an der Universität Tübingen an isolierten Vorhofzellen durchgeführt wurden. In diesen Studien wurde in Übereinstimmung mit den erzielten mRNA-Daten eine Abnahme des Ito-Kaliumstromes und des ICa,L-Kalziumstromes nachgewiesen. Mit diesen Untersuchungen konnten frühere Resultate, die auch an Patienten mit chronischem Vorhofflimmern erhoben wurden, bestätigt werden. Die gefundene Regulation zeigt, dass diese Ionenkanalgene eine wichtige Rolle bei dem frühen elektrischen Remodeling spielen und dass das Rapid-Pacing- Kaninchenmodell ein geeignetes Tiermodell für das Vorhofflimmern beim Menschen ist

    The antihistamine fexofenadine does not affect I(Kr) currents in a case report of drug-induced cardiac arrhythmia

    No full text
    1. The human HERG gene encodes the cardiac repolarizing K(+) current I(Kr) and is genetically inactivated in inherited long QT syndrome 2 (LQTS2). The antihistamine terfenadine blocks HERG channels, and can cause QT prolongation and torsades de pointes, whereas its carboxylate fexofenadine lacks HERG blocking activity. 2. In the present study the ability of fexofenadine to block the K897T HERG channel variant was investigated. The underlying single nucleotide polymorphism (SNP) A2960C was identified in a patient reported to develop fexofenadine-associated LQTS. 3. K897T HERG channels produced wild-type-like currents in Xenopus oocytes. Even at a concentration of 100 μM, fexofenadine did not inhibit wild-type or K897T HERG channels. Coexpression of wild-type and K897T HERG with the ß-subunit MiRP1, slightly changed current kinetics but did not change sensitivity to terfenadine and fexofenadine. 4. Western blot analysis and immunostaining of transiently transfected COS-7 cells demonstrated that overall expression level, glycosylation pattern and subcellular localization of K897T HERG is indistinguishable from wild-type HERG protein, and not altered in the presence of 1 μM fexofenadine. 5. We provide the first functional characterization of the K897T HERG variant. We demonstrated that K897T HERG is similar to wild-type HERG, and is insensitive to fexofenadine. Although the polymorphism changes PKA and PKC phosphorylation sites, regulation of K897T HERG by these kinases is not altered. 6. Our results strongly indicate that QT lengthening and cardiac arrhythmia in the reported case of drug-induced LQT are not due to the K897T exchange or to an inhibitory effect of fexofenadine on cardiac I(Kr) currents

    Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications

    No full text
    corecore