90 research outputs found

    Uprobe 2008: an online resource for universal overgo hybridization-based probe retrieval and design†

    Get PDF
    Cross-species sequence comparisons are a prominent method for analyzing genomic DNA and an ever increasing number of species are being selected for whole-genome sequencing. Targeted comparative genomic sequencing is a complementary approach to whole-genome shotgun sequencing and can produce high-quality sequence assemblies of orthologous chromosomal regions of interest from multiple species. Genomic libraries necessary to support targeted mapping and sequencing projects are available for more than 90 vertebrates. An essential step for utilizing these and other genomic libraries for targeted mapping and sequencing is the development of the hybridization-based probes, which are necessary to screen a genomic library of interest. The Uprobe website (http://uprobe.genetics.emory.edu) provides a public online resource for identifying or designing ‘universal’ overgo-hybridization probes from conserved sequences that can be used to efficiently screen one or more genomic libraries from a designated group of species. Currently, Uprobe provides the ability to search or design probes for use in broad groups of species, including mammals and reptiles, as well as more specific clades, including marsupials, carnivores, rodents and nonhuman primates. In addition, Uprobe has the capability to design custom probes from multiple-species sequence alignments provided by the user, thus providing a general tool for targeted comparative physical mapping

    ESMO-ESGO consensus conference recommendations on ovarian cancer: Pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease

    Get PDF
    The development of guidelines is one of the core activities of the European Society for Medical Oncology (ESMO) and European Society of Gynaecologial Oncology (ESGO), as part of the mission of both societies to improve the quality of care for patients with cancer across Europe. ESMO and ESGO jointly developed clinically-relevant and evidence-based guidelines in several selected areas in order to improve the quality of care for women with ovarian cancer. The ESMO-ESGO consensus conference on ovarian cancer was held on 12-14 April 2018 in Milan, Italy, and comprised a multidisciplinary panel of 40 leading experts in the management of ovarian cancer. Before the conference, the expert panel worked on five clinically relevant questions regarding ovarian cancer relating to each of the following four areas: pathology and molecular biology, early-stage and borderline tumours, advanced stage disease and recurrent disease. Relevant scientific literature, as identified using a systematic search, was reviewed in advance. During the consensus conference, the panel developed recommendations for each specific question and a consensus was reached. The recommendations presented here are thus based on the best available evidence and expert agreement. This article presents the recommendations of this ESMO-ESGO consensus conference, together with a summary of evidence supporting each recommendation

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity

    Induced topological changes in DNA complexes: influence of DNA sequences and small molecule structures

    Get PDF
    Heterocyclic diamidines are compounds with antiparasitic properties that target the minor groove of kinetoplast DNA. The mechanism of action of these compounds is unknown, but topological changes to DNA structures are likely to be involved. In this study, we have developed a polyacrylamide gel electrophoresis-based screening method to determine topological effects of heterocyclic diamidines on four minor groove target sequences: AAAAA, TTTAA, AAATT and ATATA. The AAAAA and AAATT sequences have the largest intrinsic bend, whereas the TTTAA and ATATA sequences are relatively straight. The changes caused by binding of the compounds are sequence dependent, but generally the topological effects on AAAAA and AAATT are similar as are the effects on TTTAA and ATATA. A total of 13 compounds with a variety of structural differences were evaluated for topological changes to DNA. All compounds decrease the mobility of the ATATA sequence that is consistent with decreased minor groove width and bending of the relatively straight DNA into the minor groove. Similar, but generally smaller, effects are seen with TTTAA. The intrinsically bent AAAAA and AAATT sequences, which have more narrow minor grooves, have smaller mobility changes on binding that are consistent with increased or decreased bending depending on compound structure

    Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis

    Get PDF
    Background To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1 alpha and IL-1 beta); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0.22 SD (95% CI 0.18-0.25; 12.5%; p=9.3 x 10(-33)), concentrations of interleukin 6 decreased by 0.02 SD (-0.04 to -0.01; -1,7%; p=3.5 x 10(-3)), and concentrations of C-reactive protein decreased by 0.03 SD (-0.04 to -0.02; -3.4%; p=7.7 x 10(-14)). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1.15 (1.08-1.22; p=1.8 x 10(-6)) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1.03 (1.02-1.04; p=3.9 x 10(-10)). Perallele odds ratios were 0.97 (0.95-0.99; p=9.9 x 10(-4)) for rheumatoid arthritis, 0.99 (0.97-1.01; p=0.47) for type 2 diabetes, 1.00 (0.98-1.02; p=0.92) for ischaemic stroke, and 1.08 (1.04-1.12; p=1.8 x 10(-5)) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. Interpretation Human genetic data suggest that long-term dual IL-1 alpha/beta inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations. Copyright (C) The Interleukin 1 Genetics Consortium. Open Access article distributed under the terms of CC-BY-NC-ND

    Ein Gasentwickelungsapparat

    No full text

    Provision of an X-environment using the HEPiX-X11 scripts

    No full text
    At CERN, we have created a user X11 environment within the HEPiX framework. Customisation is possible at the HEPiX, site, cluster, machine, group and user level, in order of increasing priority. The management of the X11 session is divorced from the window management. FVWM is the default window manager, being light on system resources while providing most of the desired functionality. The assembly of a correctly ordered. fvwmrc is done automatically by the scripts, with customisation allowed at all of the above levels. Two tools are provided to query aspects of that environment. These may be used both at the start of the X-session or when commencing any application. The first is guesskbd, a tool to identify the user's keyboard. A second, provides useful information about a given display

    DNA-sequence binding preference of the GC-selective ligand mithramycin. Deoxyribonuclease-I/deoxyribonuclease-II and hydroxy-radical footprinting at CCCG, CCGC, CGGC, GCCC and GGGG flanked by (AT)n and An . Tn

    No full text
    We have used hydroxy‐radical and deoxyribonuclease‐I footprinting to probe the interaction of mithramycin with DNA fragments containing the sequences (AT)10X(AT)10 (X = CCCG, CCGC or CGGC) and A14GCCCT15. As expected the drug produces clear footprints located around the central four GC base pairs. The exact position of the footprint is different for the four sequences; the footprint with CCCG is displaced by two base pairs in the 5′ direction relative to GCCC. These variations are explained by suggesting that mithramycin avoids the dinucleotide CG and binds better to GG/CC than GC. Although there is little change in deoxyribonuclease‐I cleavage of the surrounding blocks of (AT)n. cleavage by deoxyribonuclease II is markedly enhanced and certain thymines on the 5′ side of the ligand‐binding site become hyperreactive to hydroxy‐radical attack. Adjacent regions of An· Tn show enhanced rates of deoxyribonuclease‐I cleavage in the presence of the antibiotic.</p
    corecore