61 research outputs found

    Relativistic superfluid models for rotating neutron stars

    Get PDF
    This article starts by providing an introductory overview of the theoretical mechanics of rotating neutron stars as developped to account for the frequency variations, and particularly the discontinuous glitches, observed in pulsars. The theory suggests, and the observations seem to confirm, that an essential role is played by the interaction between the solid crust and inner layers whose superfluid nature allows them to rotate independently. However many significant details remain to be clarified, even in much studied cases such as the Crab and Vela. The second part of this article is more technical, concentrating on just one of the many physical aspects that needs further development, namely the provision of a satisfactorily relativistic (local but not microscopic) treatment of the effects of the neutron superfluidity that is involved.Comment: 42 pages LateX. Contribution to Physics of Neutron Star Interiors, ed. D. Blasche, N.K. Glendenning, A. Sedrakian (ECT workshop, Trento, June 2000

    Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes

    Get PDF
    Iron is a scarce but essential micronutrient in the oceans that limits primary productivity in many regions of the surface ocean. The mechanisms and rates of Fe supply to the ocean interior are still poorly understood and quantified. Iron isotope ratios of different Fe pools can potentially be used to trace sources and sinks of the global Fe biogeochemical cycle if these boundary fluxes have distinct signatures. Seafloor hydrothermal vents emit metal rich fluids from mid-ocean ridges into the deep ocean. Iron isotope ratios have the potential to be used to trace the input of hydrothermal dissolved iron to the oceans if the local controls on the fractionation of Fe isotopes during plume dispersal in the deep ocean are understood. In this study we assess the behaviour of Fe isotopes in a Southern Ocean hydrothermal plume using a sampling program of Total Dissolvable Fe (TDFe), and dissolved Fe (dFe). We demonstrate that ÎŽ56Fe values of dFe (ÎŽ56dFe) within the hydrothermal plume change dramatically during early plume dispersal, ranging from −2.39 ± 0.05‰ to −0.13 ± 0.06‰ (2 SD). The isotopic composition of TDFe (ÎŽ56TDFe) was consistently heavier than dFe values, ranging from −0.31 ± 0.03‰ to 0.78 ± 0.05‰, consistent with Fe oxyhydroxide precipitation as the plume samples age. The dFe present in the hydrothermal plume includes stabilised dFe species with potential to be transported to the deep ocean. We estimate that stable dFe exported from the plume will have a ÎŽ56Fe of −0.28 ± 0.17‰. Further, we show that the proportion of authigenic iron-sulfide and iron-oxyhydroxide minerals precipitating in the buoyant plume exert opposing controls on the resultant isotope composition of dissolved Fe passed into the neutrally buoyant plume. We show that such controls yield variable dissolved Fe isotope signatures under the authigenic conditions reported from modern vent sites elsewhere, and so ought to be considered during iron isotope reconstructions of past hydrothermalism from ocean sediment records

    Low-energy electron scattering from Mg, Zn, Cd and Hg: shape resonances and electron affinities

    Get PDF
    Measurements of electron scattering at low energy from Mg, Zn, Cd and Hg have been carried out using the electron transmission method. A large shape resonance is observed for each element which we identify with the (ns2np)2P ground state of the negative ion. The electron affinities in eV are found to be Mg(–0.15), Zn(–0.49), Cd(–0,33) and Hg(–0.63) with an error of ±0.03 eV. The results are compared with the available theoretical predictions

    Wrinkle and Collapsing Process of Inflatable Tubes Under Bending Loads by Finite Element Analyses

    No full text

    Corrigendum to “Opposing controls on the isotopic signature of dissolved iron in hydrothermal plumes” [Geochim. Cosmochim Acta 202 (2017) 1–20](S0016703716307311)(10.1016/j.gca.2016.12.022)

    No full text
    The authors regret a mistake in Eq. (1) of Section 2.5 where the numerator and denominator of the Fe isotope ratios are inverted as published. The equation should read: [Formula presented] The authors would like to apologise for any inconvenience caused.</p

    Static, Buckling and Dynamic Behavior of Inflatable Beams

    No full text
    • 

    corecore