1,106 research outputs found
Contemporary challenges to iodine status and nutrition: the role of foods, dietary recommendations, fortification and supplementation
Iodine deficiency (ID) in women of childbearing age remains a global public health concern, mainly through its impact on fetal and infant neurodevelopment. While iodine status is improving globally, ID is still prevalent in pregnancy, when requirements increase. More than 120 countries have implemented salt iodisation and food fortification, strategies that have been partially successful. Supplementation during pregnancy is recommended in some countries and supported by the WHO when mandatory salt iodisation is not present. The UK is listed as one of the ten countries with the lowest iodine status globally, with approximately 60 % of pregnant women not meeting the WHO recommended intake. Without mandatory iodine fortification or recommendation for supplementation in pregnancy, the UK population depends on dietary sources of iodine. Both women and healthcare professionals have low knowledge and awareness of iodine, its sources or its role for health. Dairy and seafood products are the richest sources of iodine and their consumption is essential to support adequate iodine status. Increasing iodine through the diet might be possible if iodine-rich foods get repositioned in the diet, as they now contribute towards only about 13 % of the average energy intake of adult women. This review examines the use of iodine-rich foods in parallel with other public health strategies, to increase iodine intake and highlights the rare opportunity in the UK for randomised trials, due to the lack of mandatory fortification programmes
Iodine and pregnancy – a UK cross-sectional survey of dietary intake, knowledge and awareness
Iodine is a key component of the thyroid hormones, which are critical for healthy growth, development and metabolism. The UK population is now classified as mildly iodine-insufficient. Adequate levels of iodine during pregnancy are essential for fetal neurodevelopment, and mild iodine deficiency is linked to developmental impairments. In the absence of prophylaxis in the UK, awareness of nutritional recommendations during pregnancy would empower mothers to make the right dietary choices leading to adequate iodine intake. The present study aimed to: estimate mothers' dietary iodine intake in pregnancy (using a FFQ); assess awareness of the importance of iodine in pregnancy with an understanding of existing pregnancy dietary and lifestyle recommendations with relevance for iodine; examine the level of confidence in meeting adequate iodine intake. A cross-sectional survey was conducted and questionnaires were distributed between August 2011 and February 2012 on local (Glasgow) and national levels (online electronic questionnaire); 1026 women, UK-resident and pregnant or mother to a child aged up to 36 months participated in the study. While self-reported awareness about general nutritional recommendations during pregnancy was high (96 %), awareness of iodine-specific recommendations was very low (12 %), as well as the level of confidence of how to achieve adequate iodine intake (28 %). Median pregnancy iodine intake, without supplements, calculated from the FFQ, was 190 μg/d (interquartile range 144–256μg/d), which was lower than that of the WHO's recommended intake for pregnant women (250 μg/d). Current dietary recommendations in pregnancy, and their dissemination, are found not to equip women to meet the requirements for iodine intake
Spherical Jeans analysis for dark matter indirect detection in dwarf spheroidal galaxies - Impact of physical parameters and triaxiality
Dwarf spheroidal (dSph) galaxies are among the most promising targets for the
indirect detection of dark matter (DM) from annihilation and/or decay products.
Empirical estimates of their DM content - and hence the magnitudes of expected
signals - rely on inferences from stellar-kinematic data. However, various
kinematic analyses can give different results and it is not obvious which are
most reliable. Using extensive sets of mock data of various sizes (mimicking
'ultra-faint' and 'classical' dSphs) and an MCMC engine, here we investigate
biases, uncertainties, and limitations of analyses based on parametric
solutions to the spherical Jeans equation. For a variety of functional forms
for the tracer and DM density profiles, as well as the orbital anisotropy
profile, we examine reliability of estimates for the astrophysical J- and
D-factors for annihilation and decay, respectively. For large (N > 1000)
stellar-kinematic samples typical of 'classical' dSphs, errors tend to be
dominated by systematics, which can be reduced through the use of sufficiently
general and flexible functional forms. For small (N < 100) samples typical of
'ultrafaints', statistical uncertainties tend to dominate systematic errors and
flexible models are less necessary. We define an optimal strategy that would
mitigate sensitivity to priors and other aspects of analyses based on the
spherical Jeans equation. We also find that the assumption of spherical
symmetry can bias estimates of J (with the 95% credibility intervals not
encompassing the true J-factor) when the object is mildly triaxial (axis ratios
b/a = 0.8, c/a = 0.6). A concluding table summarises the typical error budget
and biases for the different sample sizes considered.Comment: 21 pages, 20 figures. Minor changes (several clarifications): match
the MNRAS accepted versio
An Interactive System for the Automatic Layout of Printed Circuit Boards (Araignee). EUR 5285.
Structure of Polyelectrolytes with Mixed of Monovalent and Divalent Counterions: Poisson-Boltzmann Analysis and SAXS Measurements
International audienceWe have studied by Small Angle X Ray Scattering (SAXS) the structure of salt free polyelectrolytes solutions containing monovalent and divalent counterions. We have considered mixtures of sulfonated polystyrene with monovalent (Na+) and divalent (Ca2+) counterions and measured the position of the scattering peak, q*, as a function of the monomer concentration cp and the monovalent / divalent content. The aim is to understand the variations observed in q* position when the valence of the counterions is gradually increased. This work is a continuation of a previous study in which first measurements were performed on a rather small number of sodium-PSS / calcium-PSS mixtures. In the present work, we used synchrotron radiation improved the quality of the data and varied the monovalent / divalent ratio with a much finer step. Indeed this gives new interesting results in the ranges of low and large divalent content. We analyzed SAXS results through the isotropic model and scaling approach description introduced by de Gennes et al. and developed by Dobrynin et al.. In this model, one key parameter is the chemical charge and / or the effective charge fraction feff of the polyions. Although the chemical charge fraction f of sodium-PSS and calcium-PSS polyelectrolyte is fixed by the synthesis, the effective charge fraction in mixtures varies with the monovalent / divalent ratio. This quantity has been calculated using the resolution of the Poisson-Boltzmann (PB) equation in the frame of the cell model for various monovalent / divalent contents and different concentrations. Severe deviations can be found in the effective charge values of mixtures at finite concentrations compared to the classical Manning-Oosawa prediction (infinite dilution limiting law). We demonstrate that the evolution of q* is still compatible with the isotropic model and the scaling approach in the low concentration range provided that the divalent content is not too high. In particular, a power law relation q * ~ f eff~ 0.3 can be found which looks very close to the one observed for weakly charged polyelectrolytes ( q*~ f 2 / 7 in good solvent or q*~ f 1/ 3 in theta solvent). Mixtures finally provide a way to adjust the effective charge fraction without changing the chemical nature of the polyions. However this procedure gives improvement of data prediction only in a limited range; it is still not able to fully explain the high concentration range, as well as the high divalent content mixtures. This is certainly due to the fact that the PB equations are not able to take into account the local interactions between monomers and divalent counterions, which goes beyond the mean field approach
Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs
Dwarf spheroidal (dSph) galaxies are prime targets for present and future
gamma-ray telescopes hunting for indirect signals of particle dark matter. The
interpretation of the data requires careful assessment of their dark matter
content in order to derive robust constraints on candidate relic particles.
Here, we use an optimised spherical Jeans analysis to reconstruct the
`astrophysical factor' for both annihilating and decaying dark matter in 21
known dSphs. Improvements with respect to previous works are: (i) the use of
more flexible luminosity and anisotropy profiles to minimise biases, (ii) the
use of weak priors tailored on extensive sets of contamination-free mock data
to improve the confidence intervals, (iii) systematic cross-checks of binned
and unbinned analyses on mock and real data, and (iv) the use of mock data
including stellar contamination to test the impact on reconstructed signals.
Our analysis provides updated values for the dark matter content of 8
`classical' and 13 `ultrafaint' dSphs, with the quoted uncertainties directly
linked to the sample size; the more flexible parametrisation we use results in
changes compared to previous calculations. This translates into our ranking of
potentially-brightest and most robust targets---viz., Ursa Minor, Draco,
Sculptor---, and of the more promising, but uncertain targets---viz., Ursa
Major 2, Coma---for annihilating dark matter. Our analysis of Segue 1 is
extremely sensitive to whether we include or exclude a few marginal member
stars, making this target one of the most uncertain. Our analysis illustrates
challenges that will need to be addressed when inferring the dark matter
content of new `ultrafaint' satellites that are beginning to be discovered in
southern sky surveys.Comment: 19 pages, 14 figures, submitted to MNRAS. Supplementary material
available on reques
Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy
The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most
attractive targets for indirect searches of dark matter. In this work, we
reconstruct the dark matter annihilation (J-factor) and decay profiles for the
newly discovered dSph Reticulum II. Using an optimized spherical Jeans analysis
of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS), we
find Reticulum II's J-factor to be among the largest of any Milky Way dSph. We
have checked the robustness of this result against several ingredients of the
analysis. Unless it suffers from tidal disruption or significant inflation of
its velocity dispersion from binary stars, Reticulum II may provide a unique
window on dark matter particle properties.Comment: 5 pages, 4 figures. Match the ApJL accepted versio
Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ-ray observatories - I. The classical dwarf spheroidal galaxies
Due to their large dynamical mass-to-light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in γ-rays. We examine their detectability by present and future γ-ray observatories. The key innovative features of our analysis are as follows: (i) we take into account the angular size of the dSphs; while nearby objects have higher γ-ray flux, their larger angular extent can make them less attractive targets for background-dominated instruments; (ii) we derive DM profiles and the astrophysical J-factor (which parametrizes the expected γ-ray flux, independently of the choice of DM particle model) for the classical dSphs directly from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split-power-law distribution, with and without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over unknown parameters and determine the sensitivity of our derived J-factors to both model and measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our J-factor determinations recover the correct solution within our quoted uncertainties. Our key findings are as follows: (i) subclumps in the dSphs do not usefully boost the signal; (ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∼20 kpc with cored haloes can be up to ∼50 times worse than when estimated assuming them to be point-like. Even for the satellite-borne Fermi-Large Area Telescope (Fermi-LAT), the sensitivity is significantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider the angular extent of the dSphs when selecting targets; (iii) no DM profile has been ruled out by current data, but using a prior on the inner DM cusp slope 0 ≤γprior≤ 1 provides J-factor estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the J-factor is best constrained at a critical integration angle αc= 2rh/d (where rh is the half-light radius and d is the distance from the dwarf) and we estimate the corresponding sensitivity of γ-ray observatories; (v) the ‘classical' dSphs can be grouped into three categories: well constrained and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the Fermi-LAT integrated over the mission lifetime are more promising than observations with the planned Cherenkov Telescope Array for DM particle mass ≲ 700 GeV. However, even the Fermi-LAT will not have sufficient integrated signal from the classical dwarfs to detect DM in the ‘vanilla' Minimal Supersymmetric Standard Model. Both the Galactic Centre and the ‘ultrafaint' dwarfs are likely to be better targets and will be considered in future wor
Iodine status during pregnancy in India and related neonatal and infant outcomes
Objective:
To document iodine status in Indian pregnancies, associations with maternal diet and demographics, and offspring developmental measures.
Design:
Longitudinal study following mothers through pregnancy and offspring up to 24 months.
Setting:
Rural health-care centre (Vadu) and urban antenatal clinic (Pune) in the Maharashtra region of India.
Subjects:
Pregnant mothers at 17 (n 132) and 34 weeks’ (n 151) gestation and their infants from birth to the age of 24 months.
Results:
Median urinary iodine concentration (UIC) was 203 and 211 μg/l at 17 and 34 weeks of pregnancy, respectively (range 26–800 μg/l). Using the UIC distribution adjusted for within-person variation, extreme UIC quartiles were compared for predictors and outcomes. There was no correlation between UIC at 17 and 34 weeks, but 24 % of those with UIC in the lowest quartile at 17 weeks had UIC in the same lowest quartile at 34 weeks. Maternal educational, socio-economic status and milk products consumption (frequency) were different between the lowest and highest quartile of UIC at 34 weeks. Selected offspring developmental outcomes differed between the lowest and highest UIC quartiles (abdominal circumference at 24 months, subscapular and triceps skinfolds at 12 and 24 months). However, UIC was only a weak predictor of subscapular skinfold at 12 months and of triceps skinfold at 24 months.
Conclusions:
Median UIC in this pregnant population suggested adequate dietary provision at both gestational stages studied. Occasional high results found in spot samples may indicate intermittent consumption of iodine-rich foods. Maternal UIC had limited influence on offspring developmental outcomes
Coincidence measurement of residues and light particles in the reaction 56Fe+p at 1 GeV per nucleon with SPALADIN
The spallation of Fe in collisions with hydrogen at 1 A GeV has been
studied in inverse kinematics with the large-aperture setup SPALADIN at GSI.
Coincidences of residues with low-center-of-mass kinetic energy light particles
and fragments have been measured allowing the decomposition of the total
reaction cross-section into the different possible de-excitation channels.
Detailed information on the evolution of these de-excitation channels with
excitation energy has also been obtained. The comparison of the data with
predictions of several de-excitation models coupled to the INCL4 intra-nuclear
cascade model shows that only GEMINI can reasonably account for the bulk of
collected results, indicating that in a light system with no compression and
little angular momentum, multifragmentation might not be necessary to explain
the data.Comment: 4 pages, 5 figures, revised version accepted in Phys. Rev. Let
- …
