492 research outputs found

    Assessing Options for Remediation of Contaminated Mine Site Drainage Entering the River Teign, Southwest England

    Get PDF
    The river Teign in Devon has come under scrutiny for failing to meet environmental quality standards for ecotoxic metals due to past mining operations. A disused mine known as Bridford Barytes mine, has been found to contribute a significant source of Zn, Cd and Pb to the river. Recently, studies have been focused on the remediation of such mine sites using low-cost treatment methods to help reduce metal loads to the river downstream. This paper explores the metal removal efficiency of red mud, a waste product from the aluminium industry, which has proven to be an attractive low-cost treatment method for adsorbing toxic metals. Adsorption kinetics and capacity experiments reveal metal removal efficiencies of up to 70% within the first 2 h when red mud is applied in pelletized form. Further, it highlights the potential of biochar, another effective adsorbent observed to remove &gt;90% Zn using agricultural feedstock. Compliance of the Teign has been investigated by analysing dissolved metal concentrations and bioavailable fractions of Zn to assess if levels are of environmental concern. By applying a real-world application model, this study reveals that compressed pellets and agricultural biochar offer an effective, low-cost option to reducing metal concentrations and thus improving the quality of the river Teign.</jats:p

    Driving Factors of Land Change in China’s Loess Plateau: Quantification Using Geographically Weighted Regression and Management Implications

    Get PDF
    Land change is a key topic in research on global environmental change, and the restoration of degraded land is the core component of the global Land Degradation Neutrality target under the UN 2030 Agenda for Sustainable Development. In this study, remote-sensing-derived land-use data were used to characterize the land-change processes in China’s Loess Plateau, which is experiencing large-scale ecological restoration. Geographically Weighted Regression was applied to capture the spatiotemporal variations in land change and driving-force relationships. First, we explored land-use change in the Loess Plateau for the period 1990–2015. Grassland, cropland and forestland were dominant land cover in the region, with a total percentage area of 88%. The region experienced dramatic land-use transitions during the study period: degraded grassland and wetland, expansion of cropland and built-up land and weak restoration of forestland during 1990–2000; and increases in grassland, built-up land, forestland and wetland, concurrent with shrinking cropland during 2000–2015. A Geographically Weighted Regression (GWR) analysis revealed altitude to be the common dominant factor associated with the four major land-use types (forestland, grassland, cropland and built-up land). Altitude and slope were found to be positively associated with forestland, while being negatively associated with cropland in the high, steep central region. For both forestland and grassland, temperature and precipitation behaved in a similar manner, with a positive hotspot in the northwest. Altitude, slope and distance to road were all negatively associated with built-up land across the region. The GWR captured the spatial non-stationarity on different socioeconomic driving forces. Spatial heterogeneity and temporal variation of the impact of socioeconomic drivers indicate that the ecological restoration projects positively affected the region’s greening trend with hotspots in the center and west, and also improved farmer well-being. Notably, urban population showed undesired effects, expressed in accelerating grassland degradation in central and western regions for 1990–2000, hindering forestland and grassland restoration in the south during 2000–2015, and highlighting the long-term sustainability of the vegetation restoration progress. Such local results have the potential to provide a methodological contribution (e.g., nesting local-level approaches, i.e., GWR, within land system research) and spatially explicit evidence for context-related and proactive land management (e.g., balancing urbanization and ecological restoration processes and advancing agricultural development and rural welfare improvement)

    Land cover harmonization using Latent Dirichlet Allocation

    Get PDF
    Large-area land cover maps are produced to satisfy different information needs. Land cover maps having partial or complete spatial and/or temporal overlap, different legends, and varying accuracies for similar classes, are increasingly common. To address these concerns and combine two 30-m resolution land cover products, we implemented a harmonization procedure using a Latent Dirichlet Allocation (LDA) model. The LDA model used regionalized class co-occurrences from multiple maps to generate a harmonized class label for each pixel by statistically characterizing land attributes from the class co-occurrences. We evaluated multiple harmonization approaches: using the LDA model alone and in combination with more commonly used information sources for harmonization (i.e. error matrices and semantic affinity scores). The results were compared with the benchmark maps generated using simple legend crosswalks and showed that using LDA outputs with error matrices performed better and increased harmonized map overall accuracy by 6–19% for areas of disagreement between the source maps. Our results revealed the importance of error matrices to harmonization, since excluding error matrices reduced overall accuracy by 4–20%. The LDA-based harmonization approach demonstrated in this paper is quantitative, transparent, portable, and efficient at leveraging the strengths of multiple land cover maps over large areas

    Participation in Transition(s):Reconceiving Public Engagements in Energy Transitions as Co-Produced, Emergent and Diverse

    Get PDF
    This paper brings the transitions literature into conversation with constructivist Science and Technology Studies (STS) perspectives on participation for the first time. In doing so we put forward a conception of public and civil society engagement in sustainability transitions as co-produced, relational, and emergent. Through paying close attention to the ways in which the subjects, objects, and procedural formats of public engagement are constructed through the performance of participatory collectives, our approach offers a framework to open up to and symmetrically compare diverse and interconnected forms of participation that make up wider socio-technical systems. We apply this framework in a comparative analysis of four diverse cases of civil society involvement in UK low carbon energy transitions. This highlights similarities and differences in how these distinct participatory collectives are orchestrated, mediated, and subject to exclusions, as well as their effects in producing particular visions of the issue at stake and implicit models of participation and ‘the public’. In conclusion we reflect on the value of this approach for opening up the politics of societal engagement in transitions, building systemic perspectives of interconnected ‘ecologies of participation’, and better accounting for the emergence, inherent uncertainties, and indeterminacies of all forms of participation in transitions

    Association of depression and anxiety with clinical, sociodemographic, lifestyle and environmental factors in South Asian and white European people at high risk of diabetes

    Get PDF
    AIM: To investigate the prevalence and correlates of depressive and anxiety symptoms within South Asian and white European populations at high risk of developing Type 2 diabetes. METHODS: Data were collected at baseline, and at 12, 24 and 36 months from 1429 white European people (age 64±7 years, 35.8% women) and 160 South Asian people (age 59±9 years, 30.6% women) who were at high risk of Type 2 diabetes and who took part in two Type 2 diabetes prevention trials in Leicestershire, UK. The Hospital Anxiety and Depression Scale was administered during each study visit. Clinical, sociodemographic, lifestyle and environmental data were collected. RESULTS: At baseline, the burden of depressive symptoms varied by ethnic group and gender, with 9.9% of white European men, 14.9% of white European women, 23.6% of South Asian men and 29.2% of South Asian women exceeding the cut-off score for mild-to-severe depression. During the course of the study and after adjustment for clinical, sociodemographic, lifestyle and environmental factors, depressive symptoms remained higher in the South Asian compared to the white European participants [score higher by 1.5, 95% CI 0.9-2.1]. Levels of anxiety were also higher in the South Asian participants, although associations were attenuated after adjustment. Social deprivation, BMI, proximity to fast-food outlets and physical activity were correlates for depression in both the South Asian and white European participants. CONCLUSIONS: A higher burden of depressive symptoms was consistently evident among the South Asian participants, even after adjustment for multiple covariates. It is important to understand both the reasons why these differences are present, to help reduce health inequalities, and whether higher levels of depressive symptoms affect the uptake of and retention rates in diabetes prevention programmes in South Asian communities. This article is protected by copyright. All rights reserved

    Geographically Weighted Structural Equation Models: understanding the spatial variation of latent variables and drivers of environmental restoration effectiveness

    Get PDF
    This paper describes a methodological extension to Geographically Weighted (GW) models. It develops and applies a GW structural equation model (SEM) to understand the observed and latent drivers associated with effective landscape restoration in Northern China. The paper reviews recent landscape restoration activities in China, and describes the environmental context of these: soil loss, erosion and land degradation. Restoration effectiveness was described by changes in net primary production and fractional vegetation cover, as recorded in MODIS data for the period 2000-2012. County level census data provided information on hypothesised latent variables of population pressure, off-farm economy and rural economy. The GW SEM analysis allows the spatial variation in the contributions made by different socio-economic factors to restoration effectiveness to be evaluated. Although developed with ropey data – the County level population totals were perhaps unrealistically interpolated over a 2km grid and the MODIS data were aggregated over the same – the GW SEM allows the detail of the how what and where to be identified thus supporting local policy and planning. A number of future developments in refining this method are outlined

    A Generic Approach for Live Prediction of the Risk of Agricultural Field Runoff and Delivery to Watercourses: Linking Parsimonious Soil-Water-Connectivity Models With Live Weather Data Apis in Decision Tools

    Get PDF
    This paper describes the development and application of a novel and generic framework for parsimonious soil-water interaction models to predict the risk of agro-chemical runoff. The underpinning models represent two scales to predict runoff risk in fields and the delivery of mobilized pesticides to river channel networks. Parsimonious field and landscape scale runoff risk models were constructed using a number of pre-computed parameters in combination with live rainfall data. The precomputed parameters included spatially-distributed historical rainfall data to determine long term average soil water content and the sensitivity of land use and soil type combinations to runoff. These were combined with real-time live rainfall data, freely available through open data portals and APIs, to determine runoff risk using SCS Curve Numbers. The rainfall data was stored to provide antecedent, current and future rainfall inputs. For the landscape scale model, the delivery risk of mobilized pesticides to the river network included intrinsic landscape factors. The application of the framework is illustrated for two case studies at field and catchment scales, covering acid herbicide at field scale and metaldehyde at landscape scale. Web tools were developed and the outputs provide spatially and temporally explicit predictions of runoff and pesticide delivery risk at 1 km2 resolution. The model parsimony reflects the driving nature of rainfall and soil saturation for runoff risk and the critical influence of both surface and drain flow connectivity for the risk of mobilized pesticide being delivered to watercourses. The novelty of this research lies in the coupling of live spatially-distributed weather data with precomputed runoff and delivery risk parameters for crop and soil types and historical rainfall trends. The generic nature of the framework supports the ability to model the runoff and field-to-channel delivery risk associated with any in-field agricultural application assuming application rate data are available

    Half century change of interactions among ecosystem services driven by ecological restoration: Quantification and policy implications at a watershed scale in the Chinese Loess Plateau

    Get PDF
    The concept of Ecosystem Service (ES) has provided an underpinning framework for ecological restoration research and applications. Ecological restoration is a corrective intervention that aims to reverse land degradation and to contribute to the 2030 Global Sustainable Development goal of Land Degradation Neutrality. It is critical to investigate the long-term effects of ecological restoration and land use change on ESs and ES interactions (synergies or trade-offs) to better understand the mechanisms supporting this goal. This paper describes an analysis of land use and ESs using historical data for a typical watershed in Chinese Loess Plateau, which has experienced series of restoration activities since the 1950s. Six important ESs (food provisioning, soil retention, hydrological regulation, carbon sequestration, water purification and habitat provisioning for biodiversity) were quantified at eight intervals between 1958 and 2015. The interactions between ESs were evaluated by correlation analysis. The results show that soil retention, carbon sequestration, water purification and habitat provisioning for biodiversity increased significantly across the different land use types over several decades but not hydrological regulation. The relationship between ESs was found to be variable over different time periods and a transition point between 1990 and 1995 was identified. Grassland was found to maintain greater water yield than woodland with high values of other ESs. The results suggest that trade-offs between ESs can be mitigated by adjusting the proportion of some important land use types (such as woodland and grassland)

    STOCHASTIC DYNAMICS OF LARGE-SCALE INFLATION IN DE~SITTER SPACE

    Get PDF
    In this paper we derive exact quantum Langevin equations for stochastic dynamics of large-scale inflation in de~Sitter space. These quantum Langevin equations are the equivalent of the Wigner equation and are described by a system of stochastic differential equations. We present a formula for the calculation of the expectation value of a quantum operator whose Weyl symbol is a function of the large-scale inflation scalar field and its time derivative. The unique solution is obtained for the Cauchy problem for the Wigner equation for large-scale inflation. The stationary solution for the Wigner equation is found for an arbitrary potential. It is shown that the large-scale inflation scalar field in de Sitter space behaves as a quantum one-dimensional dissipative system, which supports the earlier results. But the analogy with a one-dimensional model of the quantum linearly damped anharmonic oscillator is not complete: the difference arises from the new time dependent commutation relation for the large-scale field and its time derivative. It is found that, for the large-scale inflation scalar field the large time asymptotics is equal to the `classical limit'. For the large time limit the quantum Langevin equations are just the classical stochastic Langevin equations (only the stationary state is defined by the quantum field theory).Comment: 21 pages RevTex preprint styl

    The association between green space and cause-specific mortality in urban New Zealand: an ecological analysis of green space utility

    Get PDF
    &lt;b&gt;Background:&lt;/b&gt; There is mounting international evidence that exposure to green environments is associated with health benefits, including lower mortality rates. Consequently, it has been suggested that the uneven distribution of such environments may contribute to health inequalities. Possible causative mechanisms behind the green space and health relationship include the provision of physical activity opportunities, facilitation of social contact and the restorative effects of nature. In the New Zealand context we investigated whether there was a socioeconomic gradient in green space exposure and whether green space exposure was associated with cause-specific mortality (cardiovascular disease and lung cancer). We subsequently asked what is the mechanism(s) by which green space availability may influence mortality outcomes, by contrasting health associations for different types of green space. &lt;b&gt;Methods:&lt;/b&gt; This was an observational study on a population of 1,546,405 living in 1009 small urban areas in New Zealand. A neighbourhood-level classification was developed to distinguish between usable (i.e., visitable) and non-usable green space (i.e., visible but not visitable) in the urban areas. Negative binomial regression models were fitted to examine the association between quartiles of area-level green space availability and risk of mortality from cardiovascular disease (n = 9,484; 1996 - 2005) and from lung cancer (n = 2,603; 1996 - 2005), after control for age, sex, socio-economic deprivation, smoking, air pollution and population density. &lt;b&gt;Results:&lt;/b&gt; Deprived neighbourhoods were relatively disadvantaged in total green space availability (11% less total green space for a one standard deviation increase in NZDep2001 deprivation score, p &#60; 0.001), but had marginally more usable green space (2% more for a one standard deviation increase in deprivation score, p = 0.002). No significant associations between usable or total green space and mortality were observed after adjustment for confounders. &lt;b&gt;Conclusion&lt;/b&gt; Contrary to expectations we found no evidence that green space influenced cardiovascular disease mortality in New Zealand, suggesting that green space and health relationships may vary according to national, societal or environmental context. Hence we were unable to infer the mechanism in the relationship. Our inability to adjust for individual-level factors with a significant influence on cardiovascular disease and lung cancer mortality risk (e.g., diet and alcohol consumption) will have limited the ability of the analyses to detect green space effects, if present. Additionally, green space variation may have lesser relevance for health in New Zealand because green space is generally more abundant and there is less social and spatial variation in its availability than found in other contexts
    • 

    corecore