
  

Minerals 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/minerals 

This is a final revised version of the paper – please see https://doi.org/10.3390/min10080721 1 
For published version 2 

 3 

Article 4 

Assessing Options for Remediation of Contaminated 5 

Mine Site Drainage Entering the River Teign, 6 

Southwest England 7 

Abigail Jordan1, Rachel Hill1, Adrienne Turner1, Tyrone Roberts1 and Sean Comber1* 8 

1 School of Geography, Earth and Environmental Sciences, University of Plymouth, Drakes Circus, Plymouth, 9 
PL4 8AA.  10 
* Correspondence:* Corresponding author: sean.comber@plymouth.ac.uk 11 

Received: date; Accepted: date; Published: date  12 

Abstract： The river Teign in Devon has come under scrutiny for failing to meet Environmental 13 
Quality Standards for ecotoxic metals due to past mining operations. A disused mine known as 14 
Bridford Barytes mine, has been found to contribute a significant source of Zn, Cd and Pb to the 15 
river. Recently, studies have been focused on the remediation of such mine sites using low-cost 16 
treatment methods to help reduce metal loads to the river downstream. This paper explores the 17 
metal removal efficiency of red mud, a waste product from the aluminium industry, which has 18 
proven to be an attractive low-cost treatment method for adsorbing toxic metals. Adsorption 19 
kinetics and capacity experiments reveal metal removal efficiencies of up to 70% within the first 2 20 
hours when red mud is applied in pelletized form. Also, it highlights the potential of biochar, 21 
another effective adsorbent observed to remove >90% Zn using agricultural feedstock. Compliance 22 
of the Teign has been investigated by analysing dissolved metal concentrations and bioavailable 23 
fractions of Zn to assess if levels are of environmental concern. By applying a Real-World 24 
Application Model, this study reveals that compressed pellets and agricultural biochar offer an 25 
effective, low-cost option to reducing metal concentrations and thus improving the quality of the 26 
river Teign. 27 
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 29 

1. Introduction 30 

Historic mining in the southwest of England has left a legacy of environmental and socio-31 
economic impacts. Whilst mining operations have largely ceased throughout Devon and Cornwall, 32 
impacts have persisted resulting in localised contamination and elevated metal concentrations in 33 
soils, sediment, and waters. In England, pollution from mine waste affects over 1,700km of rivers [1] 34 
with the potential to reduce the quality of drinking water and threaten sensitive aquatic ecosystems. 35 
This legacy presents a challenge in achieving the requirements set out by the Water Framework 36 
Directive (WFD) (Directive 2000/60/EC) which has established Environmental Quality Standards 37 
(EQS) for specific pollutants such as arsenic (As), zinc (Zn), copper (Cu), iron (Fe), chromium (Cr) 38 
and manganese (Mn), Priority Substances such as lead (Pb) and Priority Hazardous Substances such 39 
as cadmium (Cd). Meeting the standards and protecting the quality of our water bodies is therefore 40 
of fundamental importance.  41 
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The river Teign, sourced in Dartmoor, Devon, is at risk of not meeting the requirements set out 42 
by the WFD and forms the focus of this study. Exploitation of mineral resources at a local disused 43 
mine in Bridford, known as Bridford Barytes mine, have contributed to elevated concentrations of 44 
potentially toxic metals. Mining for baryte (barium sulphate) took place between 1855 and 1958, 45 
however prior to this, Pb-Zn mining occurred within the catchment [2]. Both episodes have been 46 
responsible for releasing potentially ecotoxic metals into the river Teign and monitoring data has 47 
consistently shown exceedances in metal concentrations, particularly Zn which presents the basis for 48 
this investigation.  49 

Metals sourced from mining operations are typically discharged from mine adits, where Acid 50 
Mine Drainage (AMD) is generated releasing trace metals into the environment with potentially 51 
adverse effects on the ecology. AMD is produced when sulphide-bearing minerals released from 52 
mining activities are exposed to atmospheric conditions. The most common sulphide mineral in this 53 
process is pyrite (FeS₂). The oxidation of pyrite leads to the generation of sulphate and an increase in 54 
proton acidity [3], this reaction is responsible for considerable increases in acidity within the natural 55 
environment. Due to this increase in acidity, pH associated with AMD is typically below 4.0 [4], in 56 
which metals are highly soluble and easily mobilised, commonly these metals include Mn, Cr, Cd, 57 
Zn, Pb and As.  58 

Zn is one of the most encountered WFD specific pollutants from mining activities. It is a metal 59 
both essential and toxic to organisms, monitoring the concentration of Zn at the catchment scale is 60 
therefore critical to help sustain and preserve the environment. Notably, Zn is often present in high 61 
concentrations due to the background geology; this presents unique complications in assessing the 62 
risk of impacts. However, studies have shown that Zn in sediments of the river Teign and estuary are 63 
not entirely naturally occurring and are derived from mining pollution [2]. These elevated levels of Zn 64 
have been attributed to the episodes of Ba and Pb-Zn mining throughout the Teign catchment 65 
including a major source at Bridford Barytes mine. In catchments affected by AMD, Zn is commonly 66 
present in its most ecotoxic form Zn2+, as is the case with the river Teign. The release of this hydrated 67 
Zn ion into the environment is toxic to aquatic biota at elevated concentrations, with reports of 68 
reproductive and developmental responses in fish and other aquatic organisms [5]. With regards to 69 
human health, long term excessive exposure has been identified as a contributing factor to chronic 70 
diseases, a decrease in immune system function and even infertility [6,7]. Preventing such adverse 71 
effects to aquatic life and human health is the driving force behind environmental legislation. 72 

Over the years, growing concern for the environment and human health has led to an increase 73 
in legislation governing pollution associated with the mining industry. The WFD has become one of 74 
the most influential pieces of EU law concerning water pollution and the quality of our water bodies. 75 
The directive is built upon the principles of sustainable development and requires the development 76 
of management strategies referred to as River Basin Management Plans (RBMP). It also requires 77 
member states to classify the ecological quality of waters once every 6 years as either high, good, or 78 
moderate; with pass/fail Environmental Quality Standards (EQS) for chemicals of concern. To achieve 79 
good status, all the chemical and ecological parameters have to be ‘good’ as it is a one out-all out 80 
assessment. Currently the lower Teign catchment only achieves ‘moderate’ status for failing to meet 81 
the standards required for good ecological classification and for periodic failures of the Zn EQS [8]. 82 
Consequently, understanding the contribution of Zn to this river catchment and undertaking 83 
appropriate mitigation is key to meeting the demands of the WFD and is the rationale behind this 84 
study. 85 

The EQS established by the WFD are based upon recommendations from the United Kingdom 86 
Technical Advisory Group (UKTAG) and are monitored closely by the Environment Agency. They 87 
are derived from present scientific understanding of the conditions needed for a healthy water 88 
environment and utilise ecological data from thousands of sites across the UK. The revised standard 89 
for Zn in freshwaters is currently 10.9 µg/l bioavailable plus the ambient background concentration 90 
2.9 µg/l [9]. Importantly, the chemical form of zinc is greatly influenced by the hydrological and 91 
physiochemical conditions of the water [10]. Metal-concentrations, pH conditions and amount of 92 
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organic matter all control the bioavailability and toxicity of zinc [11], not considering the bioavailable 93 
fraction of zinc may result in an under or over estimation of the risks posed by the metal. These 94 
influences are therefore an important consideration when assessing if a water body is in fact ‘failing’ 95 
due to the presence of the metal and is consequently an environmental concern. 96 

Practical and cost-effective treatment for mine water is topical and extensive research has been 97 
undertaken to assess the application of different treatment methods in the UK. The degree of 98 
environmental pollution generated by AMD is highly variable, meaning treatment must be flexible 99 
and specific to each site. Passive methods to remove heavy metal ions are currently favoured due to 100 
their low cost and local availability, with techniques including constructed wetlands, limestone for 101 
neutralisation, precipitation, and adsorption [12]. Biochar is an attractive, low-cost, adsorbent material 102 
whose adsorptive properties can be influenced by the type of feedstock used. The remediation 103 
potential of biochar has been noticed by previous studies [28,29], with focus on the effects of pyrolysis 104 
temperature, contact time, initial metal concentration and type of feedstock used. It has been found 105 
that agricultural biochars have high adsorption capacities (11000mg/kg) compared to wood biochars 106 
(395.8mg/kg) [23,24]. This study emphasizes the significance of using different biochar feedstock and 107 
their influence on the removal of Zn, Cd and Pb. 108 

Red Media Technology has been trialing the capability of ‘Red Mud’ (RM) for adsorbing heavy 109 
metals from discharged mine waters at a relatively low cost. Millions of tonnes of hazardous RM 110 
waste is produced each year as a by-product of the aluminium industry; the utilization of this 111 
material therefore supports the concept of waste-recycling. It is a highly alkaline material with a pH 112 
of 10-13, the red colour comes from the presence of oxidised iron which comprises up to 60% of the 113 
mass of the product [18]. The RM is in pellet form, pre-treatment of the pellets via heat and acid 114 
treatment has been found to increase adsorption and the removal efficiency of heavy metals [19]. 115 
Laboratory studies have investigated the capabilities of four different types of pellet which have 116 
undergone treatment: Compressed (CP), fired (FP), fired-acid-etched (FAE) and a new powdered 117 
pellet (PP). Importantly, studies have shown that the pre-treatment of pellets is essential in the 118 
adsorption process and hence determines the overall effectiveness of removing heavy metals from 119 
mine water [14]. However, they seldom consider the practicalities of applying these treatment methods 120 
to a real-world application. This report aims to evaluate the feasibility of red mud pellets and biochar 121 
as treatment methods, weighing up the benefits and costs to see which method will be most 122 
applicable for reducing metal loads to the Teign. Principally it focuses on Zn, however the removal 123 
efficiencies for the priority substances Cd and Pb have also been considered for comparison.  124 
         Compressed pellets have been tested in the laboratory and during a field scale trial by Hill (2016) 125 
[14] and Comber (2015) [16] respectively. CP have been compacted under high pressure, forming small 126 
and crumbly pellets of varying sizes (Figure 1a) [14]. They have lost porosity during compaction and 127 
have a high surface area; however, the field trial shows that the pellets lack structural integrity and 128 
suffered degradation during the experiment [16]. Lab based experiments using fired pellets have been 129 
conducted by Hill (2016) [14] and Turner (2017) [13]. Production of the FP involves heating in a kiln at 130 
1050°C for 2 hours and allowed to cool for a further 2 days [14]. The pellets are more uniform in size, 131 
with a coarse texture and an overall lower surface area compared with the compressed pellets (Figure 132 
1b) [13]. The adsorption efficiency of the fired acid etched pellets have been tested by Turner (2017) [13], 133 
where they are described as small, bright orange pellets with a powdery texture and a smoother 134 
surface produced from etching (Figure 1c). The powdered pellets described by Turner (2017) [13], are 135 
similar in appearance to the compressed pellets, with a cylindrical shape, powdery texture, and a 136 
dark orange colour, fired at 800°C. 137 
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Figure 1. Red media pellets which have all been pre-treated. (A) Compressed Pellets [14]. (B) Fired 152 
Pellets [14]. (C) Fired acid etched pellets [13]. 153 

 154 
Ultimately, information collated on these studies of different treatment methods are employed 155 

by the competent authorities (Environment Agency and Coal Authority) to develop and build mine 156 
water treatment schemes to clean up our waters where the quality has been compromised by 157 
pollution from abandoned mine sites [1]. Currently, one of the greatest challenges in treating pollution 158 
generated from AMD is finding a method that meets the expectations of efficiency, cost, and 159 
sustainability. The objective of this study is to assess the necessity of Zn, Cd and Pb removal in the 160 
river Teign and evaluate the efficiency of treatment methods that utilise red media. The results will 161 
enable an assessment of the practicalities associated with reducing Zn loads to the catchment, and an 162 
overall more comprehensive understanding of adopting low-cost adsorption treatments to mine sites 163 
in the UK. 164 

2. Methodology 165 

2.1. Study Area 166 

The study is based on a former baryte mine in Bridford, situated south west of Exeter 167 
(SX83148643). The mine is located within the Teign valley on the north eastern edge of Dartmoor 168 
(Figure 2) where metalliferous mineral deposits have been extracted since the bronze age due to the 169 
presence of a large granite batholith. Mineral deposits in the area consist mainly of shales, mudstones, 170 
cherts and tuffs, also known as the Culm measures; these deposits contain the Ba-Pb-Zn loads [15]. 171 

A B 
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Initially, Pb mining took place at the site dated at around 1804, however, low profits moved 172 
production to Ba in 1855, with final abandonment of the mine in 1958 [2,16]. 173 
  174 

Figure 2. Map showing the location of Bridford baryte mine which is situated on the north eastern 175 
edge of Dartmoor within the Teign catchment along with the Environment Agency sampling points 176 
and mean zinc concentrations (µg/l) (2000-2020 data). 177 

Mine water discharged from the main adit is channelled to the Bridford beck via an Environment 178 
Agency monitoring point. The Bridford beck is a tributary of the Rookery Brook sourced in Dartmoor 179 
which flows downstream approximately 1 km into the river Teign, both water courses currently 180 
exceed the Zn EQS [14,16]. However, these tributaries comprise a small area of the catchment 181 
(approximately 6km2 out of 540km2 for the Teign catchment [17]) and at first instance, seem unlikely 182 
to contribute greatly to the elevated Zn concentrations of the Teign.  183 

 184 

2.2. Current studies using Red Media Technology products 185 

Laboratory studies have been undertaken to assess the removal efficiency of pre-treated pellets 186 
[13,14]. Samples were collected from the adit outflow in June and November 2016 at Bridford along with 187 
in situ measurements of pH, temperature, dissolved oxygen content and redox potential. Previous 188 
monitoring has shown concentrations of trace metals in the adit discharge to be remarkably stable 189 
over time. CP, FP, FAE and PP were supplied by Red Media Technologies to determine their metal 190 
removal efficiency and suitability to a mine environment [20]. An adsorption kinetics experiment 191 
tested the rate of analyte adsorption by adding 850ml of mine water to 200g of RM pellets in a 1 litre 192 
polythene bottle followed by continuous agitation on an orbital shaker, with 9ml of sample being 193 
remover by syringe at set time intervals which were filtered through cellulose nitrate 22mm 194 
membranes before preservation using ultra pure nitric acid (100 µl of 20% acid). A full outline of this 195 
methodology can be found in the Electronic Supporting Information (ESI, S1). Starting and final 196 
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analyte concentrations of the mine water were analysed using Inductively Coupled Plasma 197 
instruments such as ICP-MS (Inductively Coupled Plasma – Mass Spectrometry, Thermo Scientific X 198 
Series 2, with indium and iridium internal standards) and ICP-OES (Inductively Coupled Plasma – 199 
Optical Emission Spectrometry; Thermo Scientific ICAP 7400 Series with yttrium internal standard), 200 
the removal efficiencies were then calculated after 2 hours for Cd, Pb and Zn. Briefly, ICP-OES was 201 
used for samples with metals in the mg/l range and ICP-MS for metals in the µg/l range. Certified 202 
Reference Materials (Enviromat, EPL-3), internal control samples and blanks were determined within 203 
each batch of samples to ensure data quality. Recoveries for Zn, Pb and Cd were 100% +/- 10% and 204 
precision for the 3 replicate analyses for each sample were typically less than 5% relative standard 205 
deviation [13,14]. The pH was also tested at the start and end of the experiment to reveal any 206 
neutralising capabilities of the pellets [13].  207 

As well as a kinetics experiment, an adsorption capacity column experiment was undertaken to 208 
determine the adsorption behaviour and optimum capacity of the CP and FP in mg of metal 209 
sorbed/kg of media used. Depending on the amount of RM material available columns were either 210 
clear polycarbonate with approximately 1 litre capacity or a 60ml polythene syringe. The columns 211 
were bunged at either end with fittings to accept 1.5mm diameter polythene tubing from a Gilson 212 
Miniplus 3 peristaltic pump. The columns (3 replicates) were packed with test material and mine adit 213 
water passed through at a rate of typically 1ml/min. adit water exiting the column was collected (9ml) 214 
filtered and preserved as per the kinetic experiment. The adsorption capacity was calculated using 215 
the starting concentrations of the elements, the amount of solution which had flowed through them 216 
and the weight of pellets within the column (ESI, S2).The highest capacity achieved for each metal 217 
has been recorded [14]. 218 

A field scale trial of the removal efficiency of toxic metals using the pellets was undertaken by 219 
Comber (2015) [16] in conjunction with Red Media Technology at Bridford Barytes mine, Bridford. The 220 
trial period was a duration of 3 months to assess the performance of the pellets on a realistic timescale. 221 
The experiment consisted of a 1m3 tank containing compressed pellets (CP); mine water was 222 
delivered to the tank and samples were taken throughout the operation, including pH readings.  223 
Minewater was delivered to the test rig using a peristaltic pump with flexible pipework from the adit 224 
discharge point. The flow rate into the test rig was initially set at approximately 15% of the mine 225 
discharge flow and was adjusted to ensure consistent flow through the media tank (110 l/hr). Initial 226 
residence time of one hour was altered as the trial continued so as to give data for additional hourly 227 
intervals up to 8 hours residence time. Metal concentrations were determined by ICP-MS as described 228 
above.  Samples were collected from the inlet and output from the tank, filtered and preserved as for 229 
the laboratory studies.  230 

Analyte concentration data collected from the laboratory tests and field scale trial have been 231 
used to calculate the metal removal efficiency of each pellet form, as well as the adsorption capacity 232 
and pH neutralising capability; the results will allow an evaluation of which pellet is most suitable 233 
for reducing the Zn load from Bridford to the river Teign. 234 

2.3. Alternative Treatment Method using Biochar  235 

Biochar is a black, carbon rich solid produced by thermal decomposition of biomass, similarly 236 
to charcoal. Typically, it has a wide range of characteristics which depend upon the feedstock used; 237 
this affects the chemical and physical properties of the biochar and consequently how it acts as an 238 
adsorbent. The test data described here [21], quantified the sorption capabilities of pelletized biochar 239 
supplied by the United Kingdom Biochar Research Centre (UKBRC). Varying forms of feedstock 240 
were tested at different pyrolysis temperatures (550°C and 700°C) including char produced from 241 
forestry waste, municipal waste, and agricultural waste. Following a similar methodology to the 242 
experiments for the red media study, adsorption rates and adsorption capacities were determined for 243 
the same mine adit water. Metal concentrations were analysed by ICP-MS and ICP-OES as described 244 
above.  245 
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2.4. River Teign Metal Concentrations  246 

The Environment Agency (EA) act as the competent authority to implement the requirements 247 
set out by the WFD and closely monitor the quality of water courses within England. Data provided 248 
by the EA’s water quality archive has been extracted to determine the mean concentrations of the 249 
river Teign for dissolved Zn from 2000 to 2020. Analysing total dissolved metal concentrations forms 250 
the first stage of a tiered approach to assessing the classification of a water body in the UK [10], if the 251 
Teign exceeds the standard EQS value of 13.8, then it will progress to the next tier. Bioavailability 252 
data is accessible after 2015 from EA monitoring data, identification of the bioavailable concentration 253 
of the metal allows direct comparison with the bioavailable EQS (10.9 µg/l for zinc) and forms the 254 
second tier for assessing compliance of the Teign with the WFD.  255 

Several sample locations along the course of the river Teign have been selected to represent 256 
changing dissolved metal concentrations downstream from Bridford mine (ESI, S3). Closest to the 257 
mine adit is the Rookery brook tributary which flows into the Teign. Further downstream east of 258 
Canonteign is the Beadon brook past Wheal Exmouth mine site. Discharges sourced from Bridford 259 
mine and Wheal Exmouth are intercepted by the Teign at Chudleigh Bridge. Dissolved 260 
concentrations of Zn, Cd and Pb were obtained for these selected sites from the EA, as well as some 261 
bioavailable data for Zn, calculated using the physiochemical parameters DOC (Dissolved Organic 262 
Carbon), pH and Ca/Hardness (ESI, S8). Notably, concentrations of Cd and Pb were frequently below 263 
the limit of detection (LOD), particularly from 2000-2010, these results therefore have a high 264 
uncertainty.  265 

 266 

2.5. Real-World Application Model 267 

Using mean bioavailable metal concentration data and flow data from Chudleigh river gauging 268 
station available from the National River Flow Archive, the average load of Zn, Cd and Pb into and 269 
within the river Teign at Chudleigh has been calculated using a simple spreadsheet model [14] (ESI, 270 
S10), which simply combined flows and concentrations from the mine adit, with river data (flow and 271 
concentrations) in order to generate loads of the trace metals entering the river and therefore the mine 272 
adits contribution. River metal concentrations were available online from the Environment Agency’s 273 
Water Information System. Combining the EQS for the metal within the river with the flow, provided 274 
a ‘target’ metal load to be achieved. The actual load was calculated by multiplying the latest 275 
monitoring concentration data by the flow. Subtracting the ‘target’ metal load for EQS compliance 276 
from the current load generated a load of metal required to be removed from the adit flow. It was 277 
then a simple case of using the pellet metal adsorption capacities to estimate the amount of pellets 278 
per year (tonnes) required to reach the EQS for the water quality monitoring point at Chudleigh. 279 

 280 

3. Results 281 

3.1. Removal Efficiency Results 282 

Zn concentration data at Bridford mine adit is presented in figure 3. The results show Zn 283 
concentrations over a 24-hour period influenced by the different pellet forms.  284 

The PP show a steady decline in Zn concentration within the first 2 hours from 11600µg/l to 285 
8900µg/l, at 24 hours the final concentration is 616µg/l. The FAE pellets show a similar trend in the 286 
first 2 hours with concentrations falling from 11300µg/l to 8410µg/l, at 24 hours Zn concentration is 287 
311µg/l. The CP exhibit the steepest decline in Zn concentration and hence the fastest removal rate 288 
with concentrations decreasing from 9643µg/l to 575µg/l in just 2 hours. Concentrations fall to 43.8µg/l 289 
at 24 hours. Finally, the FP show the slowest decrease in Zn concentrations within the first 2 hours 290 
(9643 - 1388µg/l). However, afterwards, concentrations rapidly decline to 68.9µg/l at 24 hours. These 291 
results reveal that the adsorption efficiency is strongly influenced by the pre-treatment of the pellets. 292 
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A B 

C D 

Figure 3. Zinc concentrations over a 24-hour period influenced by the different pellets. 293 
A=Compressed pellets (CP), B=Fired acid-etched pellets (FAE), C=Powdered pellets (PP), D=Fired 294 
pellets (FP). 295 

Levels of pH of the mine water during the experiments show that all the pellets have neutralising 296 
capabilities and produce alkaline conditions (Table 1). The CP and FP have a greater pH increase 297 
compared with the other pellets, particularly the FP which have the largest pH increase of 4.68. A 298 
limitation of the pH test is that data for the FAE and PP pellets was recorded at a shorter duration of 299 
6 and 24 hours respectively.  300 

Table 1. pH changes of the mine adit water using the different types of pellet. Raw data extracted 301 
from Turner (2017) [13] and Hill (2016) [14]. 302 

Duration 

pH of mine adit water  

Compressed 

pellets (CP) 

Fired pellets 

(FP) 

Fired acid-etched 

pellets 

(FAE) 

Powdered pellets 

(PP) 

Start of experiment (0 

hour) 
4.65 4.65 3.78 4.59 

End of experiment 
7.80  

(53 hours) 

9.33  

(53 hours) 

5.5  

(6 hours) 

8.84 

(24 hours) 

 303 

The removal efficiencies for Zn have been calculated using starting and final Zn concentrations 304 
and are summarised in table 2 (ESI, S4). The results show the CP to have the fastest rate of removal 305 
for Zn within the first 2 hours, achieving a high removal efficiency at 53 hours. The FP achieve the 306 
highest removal efficiency at 53 hours despite the slowest decrease in Zn concentrations at the 307 
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beginning of the experiment. The PP and FAE pellets show slightly lower removal efficiencies than 308 
the other pellets at 24 hours, but still reach a removal efficiency of 95%+. 309 

 310 

Table 2. Efficiency of the different pellets for adsorbing Zn at 2, 24 and 53 hours [13,14]. 311 

Hours  Removal Efficiency for zinc (%) 

 Compressed Fired FAE Powdered 

2 73.7 22.0 25.6 23.3 

24 99.5 99.3 97.2 94.7 

53 99.8 99.9 - - 

 312 

Results from the adsorption capacity column experiment are shown in Table 3. Limited experiment 313 
duration meant that the highest capacity achieved was calculated using the starting and final 314 
concentration of the analytes, the weight of the pellets (CP 589g), (FP=410g), and the amount of liquid 315 
flowing through (1ml/min)[14]. Due to the adsorption capacity not being sufficiently reached in this 316 
experiment, more realistic capacities for the CP were used from the field scale trial by Comber (2015) 317 
for the Real-world application model. 318 

Table 3. Highest adsorption capacities achieved from the column experiment for the CP and FP [14]. 319 

 320 

 321 

       The high removal efficiency of the CP is supported by the field scale trial conducted by Comber 322 
(2015) [16]. Figure 4 shows the removal efficiency of the pellets over a 3-month period. Influent 323 
concentrations of metal were relatively stable varying by only up to 11% (relative standard deviation) 324 
for the different metals. The results reveal >80% of the Zn is removed within the first 10 days of the 325 
experiment. After this period, the removal efficiency gradually falls until it remains at below 40% 326 
after 40 days. Cd and Pb follow a similar trend but with a marked increase in removal after 70 days. 327 
These results suggest that the RM pellets require at least 2 hours to be efficient and achieve >70% 328 
removal, uptake is reduced greatly up to 24 hours and beyond (ESI, S5). 329 

Highest adsorption capacity 

reached 

Adsorption capacity of pellets (mg/kg) 

Zn Cd Pb 

Compressed Pellet >105.6 >1.1 >5.36 

Fired Pellet >150 >1.56 >3.89 

Field scale trial (Compressed pellet) 8743 35.40 2089 
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 334 

 335 

 336 

 337 

 338 

Figure 4. Graph showing results from the field scale trial. Removal efficiency of the compressed 339 
pellets for adsorbing filtered zinc, cadmium and lead over a three-month period at Bridford Barytes 340 
mine. Data taken from Comber (2015) [16]. 341 

When compared with the priority substances Cd and Pb (Figure 5), Zn appears to have the most 342 
similar adsorption rate to Cd, which is highest when influenced by the CP and lowest with the FP 343 
and FAE pellets. The results show Pb to have the greatest removal compared to Cd and Zn with all 344 
the pellets, especially the CP which exhibit nearly 100% removal efficiency. Notably, the data only 345 
shows results for a 2-hour duration; the FP are recognized to have the slowest removal efficiency 346 
during this time despite the greatest overall removal efficiency as demonstrated by figure 3 [13]. 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

Figure 5. Column chart showing the removal efficiencies of Zn, Cd and Pb with the different pellet 357 
types over a 2-hour period. 358 

The results for the different biochar feedstock are shown in figure 6 at pyrolysis temperatures of 359 
550°C and 700°C (ESI, S6). Overall, the feedstock with the highest removal efficiency after 2 hours is 360 
the agricultural waste (Miscanthus straw pellet, wheat straw pellet and oil seed rape) with analyte 361 
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removal of over 80%. Forestry waste and municipal waste have the lowest removal efficiency 362 
compared to the other types of feedstock. Pb is the most effectively removed analyte with a removal 363 
rate of >90% for the agricultural waste, whereas Zn has the lowest removal efficiency for all the 364 
biochar feedstock. Notably, there is no real difference between the removal efficiency at pyrolysis 365 
temperatures of 550°C and 700°C, except lead has a slightly higher removal efficiency at a 366 
temperature of 700°C. 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

Figure 6. Column charts showing the removal efficiency of biochar at pyrolysis temperatures of 550°C 384 
(A) and 700°C (B) for Zn, Cd and Pb [21]. 385 

3.2. River Teign Metal Concentration Results 386 

Selected sample locations downstream of Bridford mine are presented in figure 1 with average 387 
dissolved Zn concentrations at each locality calculated from 2000-2020. Estimates of Zn 388 
concentrations at the adit have been made: 11,170µg/l [22], 8,911µg/l [14], 11, 200µg/l [13] and 11,400µg/l 389 
[16]. These values show that the adit acts as a point source of consistently high Zn values of around 390 
11,000µg/l. Downstream of the adit, mine waters enter the Rookery brook where average Zn 391 
concentrations are 471.8µg/l, this is considerably higher than upstream values of 49µg/l documented 392 
by Hill (2016) [14], owing to the mine discharge from Bridford. Further downstream, Zn concentrations 393 
are reduced to 205.5µg/l at Beadon brook and then to 32.7µg/l at Chudleigh bridge. Whilst Zn levels 394 
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are observed to decline downstream, they remain above the EQS of 13.8µg/l throughout the course 395 
of the Teign before entering the lower estuary where levels are reduced to 4.8µg/l. 396 

Dissolved concentrations of Zn, Cd and Pb recorded at the sample locations have been collated 397 
to show the changing metal concentrations between 2000 and 2020 (ESI, S7); the results are presented 398 
in Figure 7. The Rookery brook PTCW (Prior to Confluence With river Teign) data shows Zn levels 399 
to initially be declining followed by a slight upward trend after 2013. Concentrations still greatly 400 
exceed the EQS with levels of 407µg/l in 2016, almost 30 times the EQS. Cd and Pb show a similar 401 
trend of levels greatly exceeding the EQS despite an overall decline in recent years. Downstream at 402 
Beadon brook, Zn concentrations fluctuate yet show a general decline to 138.9µg/l in 2018; this is still 403 
10 times above the EQS. Cd levels are comparable to Zn with declining concentrations of 1.64µg/l in 404 
2018, 20 times above the Cd EQS of 0.08µg/l. Meanwhile, Pb levels remain consistently below the EQS  405 
of 7.2µg/l, with levels recorded at 1.71µg/l in 2019. Further along the river Teign at Chudleigh bridge, 406 
metal concentrations are significantly lower than the previous localities. However, dissolved Zn  407 
remains above the EQS and shows rising levels since 2014 to 42µg/l in 2019; this is still 3 times the 408 
EQS. Cd follows a similar trend but appears to be steadily declining in recent years to 0.19µg/l, 2  409 

Figure 7. Dissolved metal concentrations (µg/l) compared with specific EQS along sample points of the river 410 
Teign. Row A shows concentrations of Zn, Cd and Pb at Rookery brook from 2011 to 2016. Row B shows metal 411 
concentrations downstream at Beadon brook from 2012 to 2019. Row C shows concentrations from Chudleigh 412 
bridge from 2011 to 2019. Data collected from the Environment Agency water quality archive. 413 
 414 
times the EQS. Pb levels, however, continue to stay below the EQS at 2.65µg/l. 415 

Identifying the bioavailable fraction forms the 2nd tier of assessing the risks posed by a 416 
pollutant. Concentrations of bioavailable Zn for 3 sample locations have been calculated with the 417 
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Biomet tool using DOC, pH and hardness data provided from the EA open data (ESI, S8). DOC 418 
ranged between 2.8 and 4.7mg/l, pH ranged from 7.24 to 7.41 and hardness ranged from 24.2 to 419 
37.3mg/l. Together, these results show that the bioavailable Zn fraction exceeds the EQS at both 420 
Chudleigh bridge (18.1µg/l) and Beadon brook (107µg/l) (Figure 8). For the river Teign at Preston, 421 
bioavailable Zn has stayed closely below the EQS (10.13µg/l).  422 
 423 

 424 

 425 

Figure 8. Annual mean bioavailable Zn levels for the river Teign at Chudleigh bridge (A), Beadon 426 
Brook (B) and Preston (C), compared to the bioavailable EQS for Zn. Data calculated from EA water 427 
quality archive [8]. 428 

3.3. Real-World Application Model 429 

The mean bioavailable concentration of Zn at Chudleigh Bridge was 18.1µg/l in 2019. This was 430 
combined with flow data at Chudleigh (5.32m3/s) to estimate the annual load from Bridford 431 
downstream to the river Teign; the load was calculated to be 1210kg/yr. As well as this, the capacity 432 
of the pellets was retrieved from adsorption capacity experiments (ESI, S9). The duration of the 433 
experiment for the CP and FP were limited, therefore maximum adsorption capacities were not 434 
reached, however the highest capacities achieved were recorded (Table 3)[14]. For the model, capacities 435 
from the field scale trial were used for a more representative result; the CP were found to have a 436 
capacity of 8743mg/kg for Zn, and 35.40mg/kg for Cd. The most efficient biochar from the experiment 437 
was agricultural biochar, with a capacity of 11000mg/kg [23]. Compared to the capacity of the wood 438 
biochar which has been observed at 395.8mg/kg [24]. The results from the model are shown in table 4; 439 
estimates of the costs of the pellets have been calculated on the basis that 1 tonne of pellets costs 440 
£88.95 to dispose of at landfill [13]. 441 
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Table 4. Table showing the amount of pellets/biochar feedstock required in tonnes/yr to lower Zn 442 
levels to the fixed EQS at Chudleigh, based on EA metal concentrations in 2019. 443 

Treatment 

Method 

Tonnes/yr required 

(assuming 100% 

efficiency) 

Tonnes/yr required based on 

removal efficiencies from this 

study 

Cost  

Compressed 

pellet (CP) 
138 

383 (36% efficiency after 3 

months) 

£34,067 a 

year 

Fired pellet (FP) 8064 
8064 (99.9% efficiency after 53 

hours) 

£717,292 a 

year 

Agricultural 

biochar  
110 

137.5 (80% efficiency after 2 

hours) 
£12,230 

Wood biochar 3056 
15,280 (20% efficiency after 2 

hours) 
£1,359,156 

 444 

The results from the model reveal that the agricultural biochar costs the least amount to reduce 445 
Zn levels in the Teign. However, the removal efficiency was only tested up to 2 hours, therefore this 446 
is not a realistic value as the removal efficiency is expected to drop over time. The CP would have a 447 
more realistic application as the field scale trial showed the removal efficiency to drop to 36% after 3 448 
months in the water; despite this drop, only 383 tonnes of pellets a year would be needed to reduce 449 
the Zn levels, costing £34,067. The lower capacity of the FP and lack of removal efficiency data over 450 
a longer duration makes it an infeasible treatment method costing £717,292 to dispose of at landfill. 451 
The wood biochar has the lowest removal efficiency and would require 15,280 tonnes a year, again 452 
an infeasible method. Using the CP, reducing Cd levels below the EQS would require 898 tonnes/yr 453 
of pellets, amounting to £79,877; this would cost more than 2 times the cost of reducing Zn levels. 454 
Dissolved Pb concentrations were below the EQS and therefore not considered in the model. 455 
 456 

4. Discussion 457 

4.1. Pellet Removal Efficiency 458 

The data from this study suggests the most suited pellet for removing Zn loads from Bridford 459 
are the CP. Fast adsorption rates allow >70% of the metal to be absorbed within the first 2 hours of 460 
experimentation. This efficiency is supported by the field-scale trial, with rapid adsorption of Zn 461 
within the first 20 days (>80%). At the end of the 3-month trial, the removal efficiency drops to <40%, 462 
suggesting that the capacity of the pellets had not been exhausted. It was assumed that precipitation 463 
of metals as insoluble hydroxides owing to the alkaline pH of the RM pellets or co-precipitation with 464 
iron and aluminum oxy-hydroxide floccs, becomes the dominant process blocking sorption sites and 465 
consequently lowering the adsorption efficiency [22]. The higher removal efficiency of the CP can be 466 
attributed to its higher surface area of 27.9m2/g compared with other pellets (35 times greater than 467 
the FP) [14]. Notably, the FP have a slower initial removal efficiency, yet remove 99.9% of Zn at 53 468 
hours. Both pellets cause an immediate pH increase when added to solution, although the FP result 469 
in the highest pH increase of 4.68, enabling the formation of precipitates such as iron hydroxide to 470 
further drive metal removal. Whilst the adsorption kinetics experiments have identified the CP and 471 
FP as having the greatest removal efficiency, the faster removal rate of the CP means a lower phase-472 
contact time is needed between the pellets and water; this makes it more suited to a real-world 473 
application. Pb is observed to adsorb more strongly than Zn and Cd, this is possibly due to its greater 474 
partition coefficient [25]. 475 

The results from the experiment are supported by other studies using RM pellets [26]. Crushed 476 
pellets with a greater surface area (like the CP) have been found to be most efficient, with enhanced 477 
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metal adsorption taking place at an optimum pH of 5/6 for Zn. Significant uptake of Zn has been 478 
documented within the first few hours of experimentation, with a less pronounced uptake after 24 479 
hours [27], in line with the results from this study. Interestingly, the FAE pellets had a lower removal 480 
efficiency compared to the CP and PP; however other studies have proved acid treatment to be highly 481 
effective in aiding adsorption [18]. Although surface area is likely to be a key driver in terms of sorption 482 
capacity owing to increased sites being available for metal exchange, the charge on the metals of 483 
interests as well the adsorbent media themselves will also influence the ability to bind metals. The 484 
pH value of the solution in which the pellets are in greatly effects the adsorption and desorption of 485 
metal ions. At a low pH the charge on the outside of the red mud has a high positive charge density, 486 
meaning a low uptake of metal ions due to electrostatic repulsion but a high adsorption of anions. 487 
However, when the pH increases the negative charge density on the surface increases, increasing 488 
metal adsorption and lowering non-metal adsorption. The presence of Al(OH)3 (gibbsite) and 489 
FeO(OH) (goethite) which are hydroxylated surfaces helps to absorb H+ ions[18] for red media but will 490 
have little impact for biochars which exhibit much less variable and more neutral pH.     491 

4.2. Biochar Removal Efficiency  492 

Previous studies have demonstrated the remediation potential of Biochar, particularly as a soil 493 
modification where application has been seen to reduce bioavailability of toxic metals and 494 
simultaneously promote plant growth. Maximum removal efficiencies (>95%) have been observed at 495 
high pyrolysis temperatures (650°C) which greatly influence the success of the treatment method [28]. 496 
Other parameters such as contact time, particle size and the type of biochar feedstock used have also 497 
been considered as important factors. 498 

Results from this study have shown the type of feedstock to be an important influence on the 499 
removal efficiency of Zn, Cd and Pb, rather than pyrolysis temperature. Forestry feedstock had the 500 
lowest removal efficiency whilst agricultural waste had the overall highest. This can be explained by 501 
the pyrolysis temperature at which the biochar is produced at. Higher temperatures produce a higher 502 
ash content which raises the pH and consequently aids metal adsorption, with maximum adsorption 503 
recorded at pH 5 [29], similarly to the RM pellets. This ash component is accountable for significant Pb 504 
immobilisation, explaining why Pb had the greatest adsorption rate in the experiment. Forestry waste 505 
has a low ash content and hence low adsorption rates. Other studies support this concept where lower 506 
pH (7.9) has been observed in wood biochars, compared to other feedstock which significantly 507 
increases the pH to 9 and above [24]. 508 

4.3. River Teign Compliance 509 

High metal concentrations do not automatically mean that a water body is failing, 510 
disproportionate results could lead to unnecessary investment in treatment methods to reduce metal 511 
concentrations when the toxicity is overestimated. However, dissolved Zn concentrations exceed 512 
standards at all sample locations downstream of Bridford mine, suggesting it to be a significant 513 
source of Zn to the river Teign. Bioavailable data shows that Zn is present in its most ecotoxic form, 514 
exceeding the bioavailable EQS all the way downstream to Preston, over 10km from Bridford mine. 515 
Bioavailability data therefore helps identify hotspots of high Zn levels such as Beadon Brook and 516 
Chudleigh where levels are of environmental concern; the metal is available for biological uptake and 517 
present at a concentration that may be harmful to plants and animals. Physiochemical parameters 518 
that control the bioavailability of a metal include DOC, pH and hardness. Optimal conditions for 519 
bioavailable Zn consist of a DOC ranging between 2.48 and 22.9mg/l and a pH between 5.7 and 8.4 520 
[30]; results from this study reveal conditions from the Teign at Chudleigh to have a pH of 7.24-7.41, 521 
and a DOC ranging between 2.8 and 4.7mg/l.  522 

Despite this, assessing the compliance of a water body is complex with many factors to consider. 523 
South Devon has naturally high occurring concentrations of heavy metals including Zn owing to its 524 
metalliferous background geology. Existing high Zn levels may result in the development of tolerant 525 
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species that can hyperaccumulate metals [31]. Therefore, the effects of Zn may not be as damaging to 526 
ecosystems as studies suggest. 527 

Cd levels in the Teign also exceed the EQS and are rising at some of the sample locations. 528 
Independently, the impacts of Cd and resulting effects on ecosystems are beyond the scope of this 529 
project. However, the synergistic effects of metals such as Zn, Cd and Pb together have been 530 
documented and observed to increase fish mortality [5]. It is therefore important to investigate the 531 
effects of combinations of metals to assess the threats posed to the environment.  532 

4.4. Application to Bridford Mine 533 

Mine adit drainage tends to be discharged from a single point as it was the main mechanism of 534 
removing water from mines to prevent flooding. In terms of remediation, it is therefore relatively 535 
straightforward to divert the flow of mine adit discharges through beds of adsorbent material for 536 
passive treatment processes, often using gravity to feed to avoid unnecessary pumping and the 537 
requirement of power to the site. The practicalities for application of this treatment at the case study 538 
site (and likely elsewhere) is considered straightforward. According to the real-world application 539 
model, the CP and agricultural biochar are the most promising treatment methods for adsorbing Zn 540 
at Bridford mine. The removal efficiency of the RM pellets is a result of pre-treatment which affects 541 
the porosity, surface area and adsorption capacity of the pellets. The CP have the highest adsorption 542 
capacity due to their larger surface area and would ultimately require less production and lower 543 
disposal costs. The FP have a much lower adsorption capacity, resulting in the need for 58 times more 544 
tonnes of pellets a year compared to the CP. Hill (2016) [14] and Turner (2017) [13] similarly found that 545 
you would need 44 times more FP than CP to efficiently remove Zn at the mine site. However, despite 546 
the slower adsorption rate of the FP, its ability to significantly raise pH may prove useful for 547 
increasing precipitation reactions and consequently removing metals via the formation of 548 
hydroxides. A limitation of this study is the difficulty in comparing the mass of pellets required for 549 
metal removal when removal efficiency has been measured over different time frames. However, it 550 
provides an insight into the potential for the CP and FP to act as an efficient low-cost adsorbent for 551 
UK mine sites. The PP also have potential for effectively removing metals at Bridford, however 552 
adsorption capacity data and a field scale trial would be necessary.  553 

Despite the success of the CP, the field scale trial by Comber (2015) [16] highlighted a few issues 554 
that may affect the pellets ability to act as an adsorbent. Firstly, the pellets lacked rigidity, resulting 555 
in a loss of structural integrity during the trial; this is problematic for a realistic application of the 556 
treatment method. Also, the precipitation of ochre (iron hydroxide) resulted in a build-up of iron on 557 
the pellet surface, blocking adsorption sites. Although, it also leads to an increase in co-precipitation 558 
of other metals, thus limiting the mobility of dissolved metals in the mine water [32]. 559 

Field scale trials of biochar treatment have shown that the effectiveness decreases over time 560 
(biochar ageing effect) [33]. However, unlike the CP, biochar is persistent in the environment and its 561 
application may be prolonged. This is particularly the case with high temperature biochars which 562 
have a greater carbon stability [34], making it a more effective adsorbent. Biochar therefore offers an 563 
attractive remediation alternative to the RM pellets. Although, the effects of potentially hazardous 564 
substances in biochars because of the feedstock used and the pyrolysis process are still largely 565 
unknown [35]. 566 

Each year, 90 million tonnes of RM are produced globally, making it widely available as an 567 
adsorbent [18]. RM as a raw material although rich in aluminium and iron, does not pose a particular 568 
threat to the environment as it binds other metals which might be present as impurities very strongly. 569 
Pre-testing of the leaching of metals from the pellets (unpublished data) should have very little 570 
desorption into deionised water. Biochars also tend to be relatively inert as organic contaminants are 571 
destroyed via the charring process and any residual metal levels are likely to be only very minor 572 
impurities.  However, once potentially toxic metals have been adsorbed to the media it is viewed as 573 
a  hazardous material and has to be disposed of accordingly. Although it may be used within the 574 
mine site for land remediation, and off-site disposal is costly, valued at £88.95 per tonne (as at April 575 
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2018) [13]. Currently, the pellets can be disposed of in mine tailings in agreement with the EA, however, 576 
where this is not possible, they are sent to an inert landfill. One viable solution to reduce disposal 577 
costs would be to drain the pellets after use to achieve a greater % of dry weight [14]. Also, to further 578 
increase the efficiency of the pellets, a cell-based system could be used where pellets are placed 579 
successively next to each other. This design would ensure that pellet capacity is not all exhausted at 580 
once, prolonging their effect of metal removal. Ultimately recovery of metals from the media and 581 
recycling the metal would be the most sustainable option, within a circular economy, but the 582 
wholesale value of the trace elements recovered would need to be higher than current market prices 583 
for this to be viable. Costs for fabrication of any remediation adsorbent beds, pumping requirements 584 
and media purchase were beyond the scope of this study and would also be dependent on the scale 585 
of operation, market prices at any given time and pumping requirements.  586 

  587 
Adsorption is an economical remediation technique, owing to the abundance of waste materials, 588 

their low cost, and high capacities. It is a much more practical option for mine sites than the current 589 
most widely used treatment method activated carbon (AC). AC is inaccessible for most remediation 590 
projects due to its high cost, which is typically more than 1000 Euros/tonne, equivalent to 591 
£914.281/tonne [36]. The metal-removing capabilities shown by the RM pellets and biochar are 592 
therefore more suited to application at Bridford mine than limited methods like activated carbon.  593 

Realistically, for the river Teign to comply with water quality standards, other inputs need to be 594 
addressed. Whilst Bridford mine is a significant source of Zn, it cannot solely be accounted for the 595 
failure of Zn levels downstream in the Teign. Other mine inputs like Wheal Exmouth near 596 
Canonteign are a potentially major source of Zn as shown by the high concentrations at Beadon brook 597 
downstream of the mine site. During the peak of mine operation (between 1851 and 1874), outputs of 598 
Pb and Zn are estimated to be 11,759 tonnes and 1589 tonnes respectively [2]. Treatment of mine water 599 
at Wheal Exmouth is necessary to reduce metal concentrations below the EQS, particularly in the case 600 
of Cd which would require 898 tonnes of pellets a year applied at Bridford alone to reduce levels 601 
below the EQS. Moreover, mine adits only represent point sources of pollution, diffuse sources such 602 
as runoff from tailings and road surfaces should also be investigated for their contribution to Zn, Cd 603 
and Pb levels. 604 

5. Conclusions 605 

This study has highlighted the long-term impact of historical mining on our local water 606 
resources, demonstrating the need for protection and assurance of water quality, implemented by 607 
key legislation like the WFD. 608 

The consistent exceedance of Zn and Cd environmental quality standards in the river Teign has 609 
formed the rationale for evaluating potential treatment methods. Adsorption techniques for mine 610 
remediation are topical due to their low cost and abundance; this study has proven the potential for 611 
pelletized RM and biochar as effective adsorbents. Pellets with a greater surface area and higher 612 
adsorption capacity such as the CP demonstrate high removal efficiencies for Zn, Cd and Pb within 613 
the first 2 hours (73.7%, 94.4% and 99.2% respectively). Agricultural biochar formed at high pyrolysis 614 
temperatures has also been observed as a promising material for removing ecotoxic metals (>80% 615 
removal within the first 2 hours). Limited data on the FAE pellets and PP meant that their application 616 
to a mine site could not be determined, however, they do exhibit neutralizing capabilities as well as 617 
effective adsorption. 618 

Treatment methods need to follow the principle of sustainable development by improving the 619 
status of a water body whilst considering the costs and benefits of their application. Reusing the 620 
hazardous RM as an adsorptive material supports this concept of sustainability, especially the CP 621 
which can be disposed of at only £34,067; this is much more economically viable than other treatment 622 
methods like activated carbon.  623 
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