1,548 research outputs found

    Using WWW to improve software development and maintenance: application of the LIGHT system to ALEPH programs

    Get PDF
    Programmers who develop, use, maintain, modify software and faced with the problem of scanning and understanding large amounts of documents, ranging from source code to requirements, analysis and design diagrams, user and reference manuals etc. This task is non trivial and time consuming LIGHT, LIfe cycle Global HyperText is an attempt to solve the problem using WWW technology. The basic idea is to make all the software documents, including code, available and cross-connected on the WWW. The first application of this concept to go in production is JULIA?LIGHT, a system to convert and publish on WWW the software documentation of the JULIA reconstruction program of the ALEPH experiment at CERN European Organisation for Particle Physics, Geneva

    Strain in Silica-Supported Ga(III) Sites : Neither Too Much nor Too Little for Propane Dehydrogenation Catalytic Activity

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICWell-defined Ga(III) sites on SiO are highly active, selective, and stable catalysts in the propane dehydrogenation (PDH) reaction. In this contribution, we evaluate the catalytic activity toward PDH of tricoordinated and tetracoordinated Ga(III) sites on SiO by means of first-principles calculations using realistic amorphous periodic SiO models. We evaluated the three reaction steps in PDH, namely, the C-H activation of propane to form propyl, the β-hydride (β-H) transfer to form propene and a gallium hydride, and the H-H coupling to release H, regenerating the initial Ga-O bond and closing the catalytic cycle. Our work shows how Brønsted-Evans-Polanyi relationships are followed to a certain extent for these three reaction steps on Ga(III) sites on SiO and highlights the role of the strain of the reactive Ga-O pairs on such sites of realistic amorphous SiO models. It also shows how transition-state scaling holds very well for the β-H transfer step. While highly strained sites are very reactive sites for the initial C-H activation, they are more difficult to regenerate. The corresponding less strained sites are not reactive enough, pointing to the need for the right balance in strain to be an effective site for PDH. Overall, our work provides an understanding of the intrinsic activity of acidic Ga single sites toward the PDH reaction and paves the way toward the design and prediction of better single-site catalysts on SiO for the PDH reaction. We performed computational calculations of Ga(III) single sites on realistic amorphous models of SiO to evaluate their catalytic activity toward the propane dehydrogenation reaction. Our results show that a balance in strain is key, in which neither too stiff nor too loose Ga−O bonding is needed to obtain the highest catalytic activity

    Resilience theory incorporated into urban wastewater systems management. State of the art

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Government bodies, utilities, practitioners, and researchers have growing interest in the incorporation of resilience into wastewater management. Since resilience is a multidisciplinary term, it is important to review what has been achieved in the wastewater sector, and describe the future research directions for the forthcoming years. This work presents a critical review of studies that deal with resilience in the wastewater treatment sector, with a special focus on understanding how they addressed the key elements for assessing resilience, such as stressors, system properties, metrics and interventions to increase resilience. The results showed that only 17 peer-reviewed papers and 6 relevant reports, a small subset of the work in wastewater research, directly addressed resilience. The lack of consensus in the definition of resilience, and the elements of a resilience assessment, is hindering the implementation of resilience in wastewater management. To date, no framework for resilience assessment is complete, comprehensive or directly applicable to practitioners; current examples are lacking key elements (e.g. a comprehensive study of stressors, properties and metrics, examples of cases study, ability to benchmark interventions or connectivity with broader frameworks). Furthermore, resilience is seen as an additional cost or extra effort, instead of a means to overcome project uncertainty that could unlock new opportunities for investment.The authors thank the consultancy team in Water Research, Strategic Advisory Services Research in Atkins UK, and Corinne Trommsdorff from IWA, for their constructive comments and support. Their contribution is highly appreciated. This work has been supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642904 - TreatRec ITN-EID project, and by the Ministry of Economy and competitiveness for the Ramon and Cajal grant from Lluís Corominas (RYC-2013-14595) and for the REaCH project (CTM2015-66892-R, MINECO/FEDER, EU). LEQUIA and ICRA were recognized as consolidated research groups by the Catalan Government with codes 2014-SGR-1168 and 2014-SGR-291, respectively. The second and fifth authors acknowledge support from the UK Engineering & Physical Sciences Research Council grant EP/K006924/1

    Premartensitic transition driven by magnetoelastic interaction in bcc ferromagnetic Ni2MnGaNi_{2}MnGa

    Get PDF
    We show that the magnetoelastic coupling between the magnetization and the amplitude of a short wavelength phonon enables the existence of a first order premartensitic transition from a bcc to a micromodulated phase in Ni2MnGaNi_{2}MnGa. Such a magnetoelastic coupling has been experimentally evidenced by AC susceptibility and ultrasonic measurements under applied magnetic field. A latent heat around 9 J/mol has been measured using a highly sensitive calorimeter. This value is in very good agreement with the value predicted by a proposed model.Comment: 4 pages RevTex, 3 Postscript figures, to be published in Physical Review Letter

    Decomposition of homogeneous polynomials with low rank

    Get PDF
    Let FF be a homogeneous polynomial of degree dd in m+1m+1 variables defined over an algebraically closed field of characteristic zero and suppose that FF belongs to the ss-th secant varieties of the standard Veronese variety Xm,dP(m+dd)1X_{m,d}\subset \mathbb{P}^{{m+d\choose d}-1} but that its minimal decomposition as a sum of dd-th powers of linear forms M1,...,MrM_1, ..., M_r is F=M1d+...+MrdF=M_1^d+... + M_r^d with r>sr>s. We show that if s+r2d+1s+r\leq 2d+1 then such a decomposition of FF can be split in two parts: one of them is made by linear forms that can be written using only two variables, the other part is uniquely determined once one has fixed the first part. We also obtain a uniqueness theorem for the minimal decomposition of FF if the rank is at most dd and a mild condition is satisfied.Comment: final version. Math. Z. (to appear

    Polar optical phonons in wurtzite spheroidal quantum dots: Theory and application to ZnO and ZnO/MgZnO nanostructures

    Full text link
    Polar optical-phonon modes are derived analytically for spheroidal quantum dots with wurtzite crystal structure. The developed theory is applied to a freestanding spheroidal ZnO quantum dot and to a spheroidal ZnO quantum dot embedded into a MgZnO crystal. The wurtzite (anisotropic) quantum dots are shown to have strongly different polar optical-phonon modes in comparison with zincblende (isotropic) quantum dots. The obtained results allow one to explain and accurately predict phonon peaks in the Raman spectra of wurtzite nanocrystals, nanorods (prolate spheroids), and epitaxial quantum dots (oblate spheroids).Comment: 11 page

    Influence of intermartensitic transitions on transport properties of Ni2.16Mn0.84Ga alloy

    Full text link
    Magnetic, transport, and x-ray diffraction measurements of ferromagnetic shape memory alloy Ni2.16_{2.16}Mn0.84_{0.84}Ga revealed that this alloy undergoes an intermartensitic transition upon cooling, whereas no such a transition is observed upon subsequent heating. The difference in the modulation of the martensite forming upon cooling from the high-temperature austenitic state [5-layered (5M) martensite], and the martensite forming upon the intermartensitic transition [7-layered (7M) martensite] strongly affects the magnetic and transport properties of the alloy and results in a large thermal hysteresis of the resistivity ρ\rho and magnetization MM. The intermartensitic transition has an especially marked influence on the transport properties, as is evident from a large difference in the resistivity of the 5M and 7M martensite, (ρ5Mρ7M)/ρ5M15(\rho_{\mathrm{5M}} - \rho_{\mathrm{7M}})/\rho _{\mathrm{5M}} \approx 15%, which is larger than the jump of resistivity at the martensitic transition from the cubic austenitic phase to the monoclinic 5M martensitic phase. We assume that this significant difference in ρ\rho between the martensitic phases is accounted for by nesting features of the Fermi surface. It is also suggested that the nesting hypothesis can explain the uncommon behavior of the resistivity at the martensitic transition, observed in stoichiometric and near-stoichiometric Ni-Mn-Ga alloys.Comment: 7 pages, 6 figures, REVTEX

    Influence of COVID-19 confinement on students' performance in higher education

    Full text link
    This study analyzes the effects of COVID-19 confinement on the autonomous learning performance of students in higher education. Using a field experiment with 458 students from three different subjects at Universidad Autónoma de Madrid (Spain), we study the differences in assessments by dividing students into two groups. The first group (control) corresponds to academic years 2017/2018 and 2018/2019. The second group (experimental) corresponds to students from 2019/2020, which is the group of students that had their face-to-face activities interrupted because of the confinement. The results show that there is a significant positive effect of the COVID-19 confinement on students' performance. This effect is also significant in activities that did not change their format when performed after the confinement. We find that this effect is significant both in subjects that increased the number of assessment activities and subjects that did not change the student workload. Additionally, an analysis of students' learning strategies before confinement shows that students did not study on a continuous basis. Based on these results, we conclude that COVID-19 confinement changed students' learning strategies to a more continuous habit, improving their efficiency. For these reasons, better scores in students' assessment are expected due to COVID-19 confinement that can be explained by an improvement in their learning performanceThis research was funded by ADeAPTIVE (Advanced Design of e-Learning Applications Personalizing Teaching to Improve Virtual Education) project with the support of the Erasmus + programme of the European Union (grant number 2017-1-ES01-KA203-038266). This study was also funded by ACCIO´, Spain (Pla d’Actuacio´ de Centres Tecnològics 2019) under the project Augmented Workplace. This study was also funded by the Fondo Supera COVID-19 (Project: Development of tools for the assessment in higher education in the COVID-19 confinemen

    Performance Degradation and Cost Impact Evaluation of Privacy Preserving Mechanisms in Big Data Systems

    Get PDF
    Big Data is an emerging area and concerns managing datasets whose size is beyond commonly used software tools ability to capture, process, and perform analyses in a timely way. The Big Data software market is growing at 32% compound annual rate, almost four times more than the whole ICT market, and the quantity of data to be analyzed is expected to double every two years. Security and privacy are becoming very urgent Big Data aspects that need to be tackled. Indeed, users share more and more personal data and user-generated content through their mobile devices and computers to social networks and cloud services, losing data and content control with a serious impact on their own privacy. Privacy is one area that had a serious debate recently, and many governments require data providers and companies to protect users’ sensitive data. To mitigate these problems, many solutions have been developed to provide data privacy but, unfortunately, they introduce some computational overhead when data is processed. The goal of this paper is to quantitatively evaluate the performance and cost impact of multiple privacy protection mechanisms. A real industry case study concerning tax fraud detection has been considered. Many experiments have been performed to analyze the performance degradation and additional cost (required to provide a given service level) for running applications in a cloud system
    corecore