
USING WWW TO IMPROVE
SOFTWARE DEVELOPMENT AND MAINTENANCE:

APPLICATION OF THE LIGHT SYSTEM TO ALEPH PROGRAMS

A. AIMAR, M. AIMAR, A. KHODABANDEH,
P. PALAZZI, B. ROUSSEAU, M. RUGGIER

docsys@ptsun00.cern.ch
Programming Techniques Group, ECP Division

M. CATTANEO, P. COMAS ILLAS

ALEPH Experiment

CERN, 1211 Geneva 23, Switzerland

Programmers who develop, use, maintain, modify software are faced with the problem of scanning
and understanding large amounts of documents, ranging from source code to requirements, analysis
and design diagrams, user and reference manuals, etc. This task is non trivial and time consuming,
because of the number and size of documents, and the many implicit cross-references that they
contain. In large distributed development teams, where software and related documents are produced
at various sites, the problem can be even more severe. LIGHT, LIfe cycle Global HyperText, is an
attempt to solve the problem using WWW technology. The basic idea is to make all the software
documents, including code, available and cross-connected on the WWW. The first application of this
concept to go in production is JULIA/LIGHT, a system to convert and publish on WWW the
software documentation of the JULIA reconstruction program of the ALEPH experiment at CERN,
European Organisation for Particle Physics, Geneva.

1 Introduction

Mastering the life cycle of large software projects implies the generation of many
documents by different people working in several sites. These documents are produced at
each stage of the life cycle process: requirement specifications, analysis documents,
modelling diagrams, data dictionaries, source code, implementation notes, end user
documentation, etc. For a programmer, the effective use of such documents is not easy
because of their:

• number and size
A software project typically generates tens of documents. In order to apply a change
in the software, a programmer needs to read and understand many of them.

• complexity
Software documentation and source code are heavily structured and cross-referenced.
They are also interdependent since each of them refines statements decided in
previous stages of the life cycle. This connectivity is only implicit: in order to
understand a software, the programmer has to navigate among several manuals and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25188368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

files, and to locate relevant information in each one of them. Typically, the
programmer must navigate:

- from a function call to a library manual,
- from a variable to its declaration,
- from a language keyword to the language reference manual,
- from a data structure to its design diagram,
- from a software requirement to one or more user requirements,
- etc.

• distributed production
Large software projects gather tens of developers, often spread across several sites in
different countries. This complicates the management of source code and
documentation; access to documents that are up to date and in step becomes more
difficult.

These three properties of the software documents: high volume, strong connectivity and
distribution are good justifications for using a publishing solution based on the
World-Wide Web. The basic idea of LIGHT (LIfe cycle Global HyperText) [3] is to make
all the software documents1, including code, available on the WWW, with all
cross-references automatically established. For instance a click on a subroutine call in
Fortran code takes you to its documentation, a click on a data element leads to the
corresponding data definition, etc. We have applied this concept to the JULIA
reconstruction program of the ALEPH experiment at CERN.

2 The JULIA Software Documentation

The JULIA reconstruction program itself consists of a large Fortran 77 program
(110K lines) and a User Manual. But, like all other offline software of the ALEPH
experiment [4], the JULIA program relies upon general ALEPH and CERN models,
packages and services, listed below.

• TheALEPH data modelis a formal description of the physics data manipulated by the
ALEPH programs. This description is based on the entity-relationship model and is
written inADAMO Data Definition Language (DDL). The ALEPH Data model
consists of 160 DDLsubschemas.

• TheBOS memory management system is used to implement and manage in Fortran
the data structures corresponding to the ALEPH data model. Elementary data
structures are calledbanks. ALEPH uses more than 1,000 such banks.

• TheALEPH database contains detector and physics parameters accessed by all
ALEPH programs.

• JULIA exploits two large libraries of routines: theALEPH library (ALEPHLIB) and
theCERN library (CERNLIB).

1. In the framework of LIGHT, a document is a file or a set of files that can be considered logically as a whole.
This definition covers not only files produced with word processors, but also source code of programs, listings
and data files.

• JULIA, like all other ALEPH programs, uses Fortran programming conventions that
allow dedicated scripts to expand the code, extract documentation and variables lists
from the source code.

This means that, in order to be used and maintained, the JULIA software requires a large
and complex documentation in the form of paper (∼800 pages of manuals), files (∼4000
pages of listing) and databases. This documentation covers not only the JULIA program
itself, but also the general ALEPH and CERN software and models used by it. As a
consequence the JULIA/LIGHT system has to convert and/or link in the same web not
only the JULIA documentation but also the general ALEPH and CERN documentation.

3 JULIA/LIGHT at Work

With JULIA/LIGHT, ALEPH programmers, documentation writers, maintainers of the
data model and end user physicists are able to view through the web the entire Fortran
source code, data definition, data design diagrams, as well as the JULIA, ALEPHLIB,
CERNLIB, ADAMO and BOS manuals. All these documents are connected with
hypertext links in such a way that, simply using the mouse, it is possible to perform
helpful inspection. Figure 1 is a “navigation map” that shows the documents available on
the web and their hypertext connectivity.

Figure 1: The JULIA/LIGHT navigation map shows the various JULIA software documents available on the
web, and their connectivity. For instance, it is possible to navigate from the Julia Source Code to the BOS Banks
descriptions.

Data

ADAMO
Manual

Julia
Code

JULIA
Manual

BOS
Manual

ALEPHLIB
Help

BOS
Banks

OMT
Diagrams

ALEPH
DDL

ALEPHLIB
Code

Guide
JULIA
Help
Guide

HBOOK
Manual

For instance, from the code of a JULIA subroutine it is possible to navigate to:

• the source code of calling and called subroutines;

• the ALEPH data definition files and design diagrams;

• ALEPH Library manual and source code, and more.

Hyperised indices and dependency trees help the navigation through the various
documents. Figure 2 gives an example of how a Fortran subroutine appears with the
NCSA mosaic WWW browser.

The JULIA/LIGHT web is publicly accessible from the URL:

http://www.cern.ch/Light/

The final production version of the web will be installed end of September 1995. It will
consist of approximately 6,000 HTML pages with 150,000 hypertext links. Until this date,
a demonstration version is available.

Figure 2: The source for a Fortran subroutine of JULIA, as seen with NCSA Mosaic. Underlined words
correspond to sources of hypertext links. Depending on the kind of include file, clicking on a file name can take
you to common blocks or to a bank description. Clicking on a routine name leads you to the corresponding
documentation. At the top of the page, a navigation panel to related documents is provided.

Main routine
of Julia

Index of Julia
routines

DDL definition
of BOS bank

Help guide for

Map of Julia

Included files:

Routine

this subroutine

web

description in
BOS manual

common blocks
global variables
inlined statements

{

4 Design and Implementation Issues

It is relatively easy to generate an HTML version of a document in a given format; plenty
of such filters and utilities are available on the Web, for formats that are well-known as
well as for others that are more exotic. In the framework of the LIGHT project, we have
developed such converters for FrameMaker [7], Fortran 77, ADAMO DDL and OMTool
Diagrams, as well as using the already existent converter for LaTeX [5]. It is nevertheless
much more difficult to design a system that integrates these converters and provides the
flexibility and power needed in large software projects such as JULIA. Four essential
requirements have dictated the design of the LIGHT system:

• Genericity: the ability to easily add new converters.

• Automatic cross-connection: the ability to automatically connect several documents
with hypertext links.

• Configurability : the ability to configure the connectivity, depending on the kind of
application.

• Incremental update: the ability to reconvert only documents that have changed,
without regenerating the web of all other documents.

These requirements have resulted in the architecture presented on Figure 3.

Figure 3: The Architecture of the LIGHT System. The conversion of source documents is performed in 2 steps.
During the first step, source documents are analysed by specialised parsers that produce LIGHT dictionaries.
LIGHT dictionaries contain the list of all possible hypertext sources and targets. The HTML generation is
performed when all LIGHT dictionaries are available. During this step, the LIGHT generator reads source
documents and generates the corresponding HTML. It creates hypertext links by navigating LIGHT dictionaries
and associating targets with destinations, according to connectivity rules described in the configuration file. The
resulting web does not contain a single URL; links are expressed through requests to the LIGHT Solver, which is
a CGI program that is able to dynamically resolve the logical information contained in the request into a physical
URL. This architecture enforces the 4 main requirements of the LIGHT system: genericity, automatic
cross-connection, configurability and incremental update.

F77

OMT

DDL

Web

F77
Parser

OMTool
Parser

LIGHT
Generator

Configuration

WWW browser

LIGHT
Solver

WWW Server

DDL
Parser

LIGHT
Dictionaries

Source
Documents

4.1 Genericity

In order to be reusable for software projects other than JULIA, the LIGHT system allows
easy addition or interchange of converters. It is therefore necessary that converters are
independent, e.g. a Fortran converter must not generate hypertext links to the Reference
Manual of a library because this means that it will not be reusable in the context of other
projects using different libraries. Under this constraint, how does one generate hypertext
links across HTML documents produced by different converters?

4.2 Automatic Cross-Connection

We solve this problem through a 2-step conversion scheme.

• In the first step, the source documents are analysed by specialised parsers, one per
document format. Each parser leaves its source document unchanged and produces a
database, called a LIGHT dictionary, containing a description of all potential sources
and targets for hypertext links (we call them tokens) in the source document. For
example, the Fortran parser creates tokens for variable declarations and usage, for
subroutine calls, for include files, etc.

• The second step starts when all source documents are processed and is performed by
the LIGHT Generator. This generic program reads all LIGHT dictionaries resulting
from the first step. It then converts the source documents one by one to HTML and
establishes hypertext links by matching hypertext sources with potential hypertext
destinations, as specified in the dictionaries.

4.3 Configurability

There are several ways to interconnect documents in a LIGHT web. For instance a routine
call in a Fortran program may be linked to the corresponding description in the reference
manual, or to its source code, or to a call tree, depending on the kind of application.
Configuring the LIGHT generator to produce the required connectivity becomes thus an
important issue. The LIGHT generator is driven by a configuration program containing
rules such as:

In MODULE “JULIA Source Code”, link
TOKENS of NAME Routine and of TYPE “Routine Call” to
TOKENS of NAME Routine and of TYPE “Routine Description”
in MODULE “HBOOK Reference Manual”

The above rule specifies that routine calls in JULIA source code must be linked to the
corresponding routine descriptions in the HBOOK manual.

4.4 Incremental Update

In the WWW, hypertext links are expressed with Uniform Resource Locators (URLs).
These are, however, not appropriate to express the connectivity amongst several
documents, as even small changes in the structure or location of one of the documents

may result in broken links in other documents [1]. For instance, if a reference manual is
changed, links from other documents may become invalid, thus requiring that all other
documents are reconverted to adapt to the new version of the reference manual. This is not
acceptable for large software projects, where the reconversion time can be very long and
new versions of any one document may be frequent.

Our solution relies upon the fact that, in a LIGHT web, each possible hypertext target has
a type and a name (e.g. subroutine RECONS). The combination of a document, a target
type and a target name identifies the target in unique way, and is less subject to changes
than a URL. Thus, in LIGHT webs, hypertext links are expressed as requests of the form
(document, name, type), instead of as URLs. A CGI program, called the LIGHT Solver,
resolves this request to the corresponding URL and returns the relevant HTML file.

5 Status and Further Developments

The JULIA/LIGHT system is currently under development. The first production version is
planned for the end of September 1995. Other longer term collaborations with ALEPH
concern interactive access to physics data and analysis tools through the WWW. The
application of LIGHT to other physics experiments is also foreseen, implying the
development of new LIGHT parsers (e.g. C/C++).

More and more software projects in HEP are using software development standards, (e.g.
ESA PSS-05 [6], object-oriented methodologies (e.g. Booch [2] and OMT [8]). These
standards and methodologies encourage the production of requirements, analysis and
design documents that increase the size and complexity of the software documentation.
Another aspect of LIGHT is concerned with the development of templates and tools to
allow the conversion and interconnection of such documents on the WWW.

Finally, we are considering ways to couple the LIGHT system with software development
tools such as source code managers, e.g. CVS, Programming Environments, e.g. SNiFF,
and CASE Tools, e.g. Rational Rose. The LIGHT system would then extract information
directly from these tools and format it in HTML “on the fly”.

6 Conclusion

The LIGHT concept is an effective solution to deliver software documentation locally or
world-wide, with all the added benefits of hypertext links. The JULIA/LIGHT system
automatically converts and cross-connects all the JULIA software documents, on WWW.
The feedback to early versions from ALEPH users shows that it significantly improves the
readability and navigation of the JULIA documentation. The LIGHT software provides a
generic scheme to build and plug in new converters and is thus extensible to other formats
and programming languages. Maintenance of generated webs is facilitated with the
possibility to update incrementally.

7 References

[1] A. Aimar, I. Hannell, A. Khodabandeh, P. Palazzi, B. Rousseau, M. Ruggier,
J. Casey, N. Drakos, WebLinker - A tool for managing WWW cross-references.
Proceedings ofSecond International WWW Conference, Chicago,
October 17-20, 1994.

[2] G. Booch, Object-Oriented Analysis and Design with Application, The
Benjamin/Commings Pub., Inc., 1994.

[3] J. Bunn, P. Palazzi, B. Rousseau, M. Smith, A Step Towards LIGHT - LIfe cycle
Global HyperText.World Wide Web and beyond in Physics Research and
Applications, San Miniato, Italy, March 14-18,1994. To Appear inInternational
Journal of Modern Physics.

[4] D. Casper, ALEPH 101 - An Introduction to the ALEPH Offline System. CERN,
ALEPH 93-26, SOFTWR 93-06.

[5] N. Drakos, The LaTeX to HTML Converter, World-Wide Web document,
http://cbl.leeds.ac.uk/nikos/tex2html/tex2html.html

[6] C. Mazza et al., ESA Software Engineering Standards, ESA Board for Software
Standardisation and Control, Prentice-Hall, 1994.

[7] B. Rousseau, M. Ruggier, Writing Documents for Paper and WWW. A Strategy
based on FrameMaker and WebMaker. Proceedings ofFirst International
Conference on the World Wide Web, Geneva, May 25-27, 1994. Also in
Computer Networks and ISDN Systems 27 (1994) 205-214.

[8] J. Rumbaugh, et al., Object-Oriented Modeling and Design, Prentice-Hall, Inc.,
1991.

