39 research outputs found

    The effectiveness evaluation of a multimedia hepatitis C prevention program for Hispanic HIV-infected individuals

    Get PDF
    Introduction—With the introduction of highly active antiretroviral therapy the Hepatitis C virus (HCV) infection has became a primary health problem among individuals suffering from HIV/ AIDS in Puerto Rico, principally those who are injecting drug users (IDUs). A multimedia educational intervention, based on the Health Beliefs Model and Social Cognitive Theory was developed and implemented to reduce HCV associated risk behaviors among IDUs. Methods—A pre- and post- intervention study evaluated the knowledge and behavioral changes in a group of HIV-infected persons recruited from February 2006 through December 2008. Results—A total of 110 participants were recruited; all were IDUs; 82% were men; 86.3% were HIV/HCV co-infected and 24.5% had active injected drugs in the last month (prior to recruitment). The group mean age was 42.2 ± 9.2 years and mean educational level was 10th grade. Knowledge of HCV risk behaviors, perception of HCV susceptibility, and perception of disease severity increased after the intervention. Knowledge of HCV clinical manifestations and HIV co-infection complications and treatment also improved. In addition, HCV risk behaviors and injecting drug practice decrease significantly among IDUs. Conclusions—This new multimedia intervention captured and maintained the participants' attention and interest, in that way facilitating their educational process. Thus, a greater of attention and interest leads to greater knowledge and prevention improvement

    Simultaneous infrared and optical observations of the transiting debris cloud around WD 1145+017

    Get PDF
    We present multiwavelength photometric monitoring of WD 1145+017, a white dwarf exhibiting periodic dimming events interpreted to be the transits of orbiting, disintegrating planetesimals. Our observations include the first set of near-infrared light curves for the object, obtained on multiple nights over the span of 1 month, and recorded multiple transit events with depths varying between ∼20 and 50 per cent. Simultaneous near-infrared and optical observations of the deepest and longest duration transit event were obtained on two epochs with the Anglo-Australian Telescope and three optical facilities, over the wavelength range of 0.5–1.2μm. These observations revealed no measurable difference in transit depths for multiple photometric pass bands, allowing us to place a 2σ lower limit of 0.8μm on the grain size in the putative transiting debris cloud. This conclusion is consistent with the spectral energy distribution of the system, which can be fit with an optically thin debris disc with minimum particle sizes of 10+5−3μm

    Spitzer Reveals Evidence of Molecular Absorption in the Atmosphere of the Hot Neptune LTT 9979b

    Get PDF
    Non-rocky sub-jovian exoplanets in high irradiation environments are rare. LTT 9979b, also known as TESS Object of Interest (TOI) 193.01, is one of the few such planets discovered to date, and the first example of an ultra-hot Neptune. The planet's bulk density indicates that it has a substantial atmosphere, so to investigate its atmospheric composition and shed further light on its origin, we obtained {\it Spitzer} IRAC secondary eclipse observations of LTT 9979b at 3.6 and 4.5 μ\mum. We combined the {\it Spitzer} observations with a measurement of the secondary eclipse in the {\it TESS} bandpass. The resulting secondary eclipse spectrum strongly prefers a model that includes CO absorption over a blackbody spectrum, incidentally making LTT 9979b the first {\it TESS} exoplanet (and the first ultra-hot Neptune) with evidence of a spectral feature in its atmosphere. We did not find evidence of a thermal inversion, at odds with expectations based on the atmospheres of similarly-irradiated hot Jupiters. We also report a nominal dayside brightness temperature of 2305 ±\pm 141 K (based on the 3.6 μ\mum secondary eclipse measurement), and we constrained the planet's orbital eccentricity to e<0.01e < 0.01 at the 99.7 \% confidence level. Together with our analysis of LTT 9979b's thermal phase curves reported in a companion paper, our results set the stage for similar investigations of a larger sample of exoplanets discovered in the hot Neptune desert, investigations which are key to uncovering the origin of this population.Comment: 12 pages, 5 figures; accepted to ApJ Letter

    TKS X: Confirmation of TOI-1444b and a Comparative Analysis of the Ultra-short-period Planets with Hot Neptunes

    Full text link
    We report the discovery of TOI-1444b, a 1.4-RR_\oplus super-Earth on a 0.47-day orbit around a Sun-like star discovered by {\it TESS}. Precise radial velocities from Keck/HIRES confirmed the planet and constrained the mass to be 3.87±0.71M3.87 \pm 0.71 M_\oplus. The RV dataset also indicates a possible non-transiting, 16-day planet (11.8±2.9M11.8\pm2.9M_\oplus). We report a tentative detection of phase curve variation and secondary eclipse of TOI-1444b in the {\it TESS} bandpass. TOI-1444b joins the growing sample of 17 ultra-short-period planets with well-measured masses and sizes, most of which are compatible with an Earth-like composition. We take this opportunity to examine the expanding sample of ultra-short-period planets (<2R<2R_\oplus) and contrast them with the newly discovered sub-day ultra-hot Neptunes (>3R>3R_\oplus, >2000F>2000F_\oplus TOI-849 b, LTT9779 b and K2-100). We find that 1) USPs have predominately Earth-like compositions with inferred iron core mass fractions of 0.32±\pm0.04; and have masses below the threshold of runaway accretion (10M\sim 10M_\oplus), while ultra-hot Neptunes are above the threshold and have H/He or other volatile envelope. 2) USPs are almost always found in multi-planet system consistent with a secular interaction formation scenario; ultra-hot Neptunes (PorbP_{\rm orb} \lesssim1 day) tend to be ``lonely' similar to longer-period hot Neptunes(PorbP_{\rm orb}1-10 days) and hot Jupiters. 3) USPs occur around solar-metallicity stars while hot Neptunes prefer higher metallicity hosts. 4) In all these respects, the ultra-hot Neptunes show more resemblance to hot Jupiters than the smaller USP planets, although ultra-hot Neptunes are rarer than both USP and hot Jupiters by 1-2 orders of magnitude.Comment: Accepted too AJ. 12 Figures, 4 table

    The Magellan-TESS Survey I: Survey Description and Mid-Survey Results

    Get PDF
    One of the most significant revelations from Kepler is that roughly one-third of Sun-like stars host planets which orbit their stars within 100 days and are between the size of Earth and Neptune. How do these super-Earth and sub-Neptune planets form, what are they made of, and do they represent a continuous population or naturally divide into separate groups? Measuring their masses and thus bulk densities can help address these questions of their origin and composition. To that end, we began the Magellan-TESS Survey (MTS), which uses Magellan II/PFS to obtain radial velocity (RV) masses of 30 transiting exoplanets discovered by TESS and develops an analysis framework that connects observed planet distributions to underlying populations. In the past, RV measurements of small planets have been challenging to obtain due to the faintness and low RV semi-amplitudes of most Kepler systems, and challenging to interpret due to the potential biases in the existing ensemble of small planet masses from non-algorithmic decisions for target selection and observation plans. The MTS attempts to minimize these biases by focusing on bright TESS targets and employing a quantitative selection function and multi-year observing strategy. In this paper, we (1) describe the motivation and survey strategy behind the MTS, (2) present our first catalog of planet mass and density constraints for 25 TESS Objects of Interest (TOIs; 20 in our population analysis sample, five that are members of the same systems), and (3) employ a hierarchical Bayesian model to produce preliminary constraints on the mass-radius (M-R) relation. We find qualitative agreement with prior mass-radius relations but some quantitative differences (abridged). The the results of this work can inform more detailed studies of individual systems and offer a framework that can be applied to future RV surveys with the goal of population inferences.Comment: 101 pages (39 of main text and references, the rest an appendix of figures and tables). Submitted to AAS Journal

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18

    Get PDF
    Planets occur most frequently around cool dwarfs, but only a handful of specific examples are known to orbit the latest-type M stars. Using TESS photometry, we report the discovery of two planets transiting the low-mass star called LP 791-18 (identified by TESS as TOI 736). This star has spectral type M6V, effective temperature 2960 K, and radius 0.17 R o, making it the third-coolest star known to host planets. The two planets straddle the radius gap seen for smaller exoplanets; they include a 1.1R ⊕ planet on a 0.95 day orbit and a 2.3R ⊕ planet on a 5 day orbit. Because the host star is small the decrease in light during these planets' transits is fairly large (0.4% and 1.7%). This has allowed us to detect both planets' transits from ground-based photometry, refining their radii and orbital ephemerides. In the future, radial velocity observations and transmission spectroscopy can both probe these planets' bulk interior and atmospheric compositions, and additional photometric monitoring would be sensitive to even smaller transiting planets

    The TESS Objects of Interest Catalog from the TESS Prime Mission

    Get PDF
    We present 2241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its 2 yr Prime Mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously known planets recovered by TESS observations. We describe the process used to identify TOIs, investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well suited for detailed follow-up observations. The TESS data products for the Prime Mission (sectors 1-26), including the TOI catalog, light curves, full-frame images, and target pixel files, are publicly available at the Mikulski Archive for Space Telescopes

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’), and thus the formation processes of the primary atmospheres of hot gas giants. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
    corecore