16 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Liquid-Phase Monolayer Doping of InGaAs with Si‑, S‑, and Sn-Containing Organic Molecular Layers

    Get PDF
    The functionalization and subsequent monolayer doping of InGaAs substrates using a tin-containing molecule and a compound containing both silicon and sulfur was investigated. Epitaxial InGaAs layers were grown on semi-insulating InP wafers and functionalized with both sulfur and silicon using mercaptopropyltriethoxysilane and with tin using allyltributylstannane. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS). The surfaces were capped and subjected to rapid thermal annealing to cause in-diffusion of dopant atoms. Dopant diffusion was monitored using secondary ion mass spectrometry. Raman scattering was utilized to nondestructively determine the presence of dopant atoms, prior to destructive analysis, by comparison to a blank undoped sample. Additionally, due to the As-dominant surface chemistry, the resistance of the functionalized surfaces to oxidation in ambient conditions over periods of 24 h and 1 week was elucidated using XPS by monitoring the As 3d core level for the presence of oxide components

    Solid-Phase Synthesis and Hybrization Behavior of Partially 2′/3′‑<i>O</i>‑Acetylated RNA Oligonucleotides

    No full text
    Synthesis of partially 2′/3′-<i>O</i>-acetylated oligoribonucleotides has been accomplished by using a 2′/3′-<i>O</i>-acetyl orthogonal protecting group strategy in which non-nucleophilic strong-base (DBU) labile nucleobase protecting groups and a UV-light cleavable linker were used. Strong-base stability of the photolabile linker allowed on-column nucleobase and phosphate deprotection, followed by a mild cleavage of the acetylated oligonucleotides from the solid support with UV light. Two 17nt oligonucleotides, which were synthesized possessing one specific internal 2′- or 3′-acetyl group, were used as synthetic standards in a recent report from this laboratory detailing the prebiotically plausible ligation of RNA oligonucleotides. In order to further investigate the effect of 2′/3′-<i>O</i>-acetyl groups on the stability of RNA duplex structure, two complementary bis-acetylated RNA oligonucleotides were also expediently obtained with the newly developed protocols. UV melting curves of 2′-<i>O</i>-acetylated RNA duplexes showed a consistent ∼3.1 °C decrease in <i>T</i><sub>m</sub> per 2′-<i>O</i>-acetyl group
    corecore