184 research outputs found

    Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland

    Get PDF
    Elevated atmospheric CO2 concentration (eCa) might reduce forest water-use, due to decreased transpiration, following partial stomatal closure, thus enhancing water-use efficiency and productivity at low water availability. If evapotranspiration (Et) is reduced, it may subsequently increase soil water storage ( S) or surface runoff (R) and drainage (Dg), although these could be offset or even reversed by changes in vegetation structure, mainly increased leaf area index (L). To understand the effect of eCa in a water-limited ecosystem, we tested whether 2 years of eCa (~40% increase) affected the hydrological partitioning in a mature water-limited Eucalyptus woodland exposed to Free-Air CO2 Enrichment (FACE). This timeframe allowed us to evaluate whether physiological effects of eCa reduced stand water-use irrespective of L, which was unaffected by eCa in this timeframe. We hypothesized that eCa would reduce tree-canopy transpiration (Etree), but excess water from reduced Etree would be lost via increased soil evaporation and understory transpiration (Efloor) with no increase in S, R or Dg. We computed Et, S, R and Dg from measurements of sapflow velocity, L, soil water content (?), understory micrometeorology, throughfall and stemflow. We found that eCa did not affect Etree, Efloor, S or ? at any depth (to 4.5 m) over the experimental period. We closed the water balance for dry seasons with no differences in the partitioning to R and Dg between Ca levels. Soil temperature and ? were the main drivers of Efloor while vapour pressure deficit-controlled Etree, though eCa did not significantly affect any of these relationships. Our results suggest that in the short-term, eCa does not significantly affect ecosystem water-use at this site. We conclude that water-savings under eCa mediated by either direct effects on plant transpiration or by indirect effects via changes in L or soil moisture availability are unlikely in water-limited mature eucalypt woodlands. (c) 2018 John Wiley and Sons LtdEuropean Commission; EucFACE is supported by the Australian Commonwealth Government in collaboration with the Western Sydney University (WSU). EucFACE was built as an initiative of the Australian Government as part of the Nation-building Economic Stimulus Package. TEG was funded by a research collaborative agreement between CSIRO and WSU within the CSIRO Flagship programme “Water for a Healthy Country” during this research, and funded by the IdEx programme of the Université de Bordeaux and a Marie Skłodowska-Curie Intra-European fellowship (Grant Agreement No. 653223) during manuscript preparation

    Clear-sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements

    Get PDF
    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (λ=380–1060 nm) is 3–8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10–17% at λ=525 nm), but these differences are within the combined error bars of the measurements and computations

    The forkhead transcription factor FOXL2 is expressed in somatic cells of the human ovary prior to follicle formation

    Get PDF
    Interactions between germ cells and surrounding somatic cells are central to ovarian development as well as later function. Disruption of these interactions arising from abnormalities in either cell type can lead to premature ovarian failure (POF). The forkhead transcription factor FOXL2 is a candidate POF factor, and mutations in the FOXL2 gene are associated with syndromic and non-syndromic ovarian failure. Foxl2-deficient mice display major defects in primordial follicle activation with consequent follicle loss, and earlier roles in gonadal development and sex determination have also been suggested. However, despite its importance no data presently exist on its expression in the developing human ovary. Expression of FOXL2 mRNA was demonstrated in the human fetal ovary between 8 and 19 weeks gestation, thus from soon after sex determination to primordial follicle development. Expression in the ovary was higher after 14 weeks than at earlier gestation weeks and was very low in the fetal testis at all ages examined. Immunolocalization revealed FOXL2 expression to be confined to somatic cells, both adjacent to germ cells and those located in the developing ovarian stroma. These cells are the site of action of oocyte-derived activin signalling, but in vitro treatment of human fetal ovaries with activin failed to reveal any regulation of FOXL2 transcription by this pathway. In summary, the expression of FOXL2 in somatic cells of the developing human ovary before and during follicle formation supports a conserved and continuing role for this factor in somatic/germ cell interactions from the earliest stages of human ovarian development

    Sustainable change: long-term efforts toward developing a learning organization

    Get PDF
    Globalization and intensified competition require organizations to change and adapt to dynamic environments in order to stay competitive. This article describes a longitudinal action research study supporting the strategic change of a trading company. The strategic change was accompanied by planned changes in organizational structures and processes, management systems, emerging changes in leadership, and organization members’ attitudes and behaviors, and it was supported by management development activities. Longitudinal data over a 4-year period including participant observation and interviews reveal that a systemic approach, a learning and becoming perspective toward change, trust, an appropriate role perception, and the specific use of management instruments contribute to sustained change that resulted in performance improvements and a move toward a learning organization. We conclude with implications for strategic change and suggestions for further research in this area

    The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Glioblastoma multiforme (GBM) is resistant to current cytotoxic therapies, in part because of enhanced DNA repair. Activation of the receptor tyrosine kinase c-Met has been shown to protect cancer cells from DNA damage. We hypothesized that inhibiting c-Met would decrease this protection and thus sensitize resistant tumor cells to the effects of radiation therapy.</p> <p>Materials and methods</p> <p>Eight human GBM cell lines were screened for radiosensitivity to the small-molecule c-Met inhibitor MP470 with colony-count assays. Double-strand (ds) DNA breaks was quantified by using antibodies to gamma H2AX. Western blotting demonstrate expression of RAD51, glycogen synthase kinase (GSK)-3β, and other proteins. A murine xenograft tumor flank model was used for <it>in vivo </it>radiosensitization studies.</p> <p>Results</p> <p>MP470 reduced c-Met phosphorylation and enhanced radiation-induced cell kill by 0.4 logs in SF767 cells. Cells pretreated with MP470 had more ds DNA damage than cells treated with radiation alone. Mechanistically, MP470 was shown to inhibit dsDNA break repair and increase apoptosis. MP470 influences various survival and DNA repair related proteins such as pAKT, RAD51 and GSK3β. <it>In vivo</it>, the addition of MP470 to radiation resulted in a tumor-growth-delay enhancement ratio of 2.9 over radiation alone and extended survival time.</p> <p>Conclusions</p> <p>GBM is a disease site where radiation is often used to address both macroscopic and microscopic disease. Despite attempts at dose escalation outcomes remain poor. MP470, a potent small-molecule tyrosine kinase inhibitor of c-Met, radiosensitized several GBM cell lines both <it>in vitro </it>and <it>in vivo</it>, and may help to improve outcomes for patients with GBM.</p

    Marking gender studies:the (Radical) value of creative-critical assessment

    Get PDF
    Feminist pedagogies have established the need to query power structures in terms of curriculum content and teaching praxis. However, the topic of student assessment poses difficulties: it is a means through which students’ performance is evaluated and quantified according to set institutionalised criteria that values particular forms of hegemonic knowledge. The following article presents a self-reflexive exploration of assessment within a Gender Studies module taught in the Autumn semesters of the 2017/18 and 2018/19 academic years at a UK university. The module was a core component of the institution’s MA in Gender Studies. This was an exciting opportunity to experiment with assessment styles corresponding to feminist pedagogies to help develop students’ and instructors’ disciplinary scope and explore the radical potential for creative-critical approaches to assessment. This article outlines some the challenges of employing alternative modes of learning and teaching from a feminist perspective and suggests some strategies to address these

    The fate of carbon in a mature forest under carbon dioxide enrichment

    Get PDF
    Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1 5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3 5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7 10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7 11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Management Ideologies and Organizational Spirituality: a Typology

    Get PDF
    The topic of spirituality is gaining an increasing visibility in organization studies. It is our contention that every theory of organization is a theory of organizational spirituality. Based on Barley and Kunda’s 1992 Administrative Science Quarterly article, we discuss the evolution of management theories as spirituality theories. From such analysis, we suggest that there may be both a meaningful/liberating and an instrumental/exploitative side in the relationship between organizations and spirituality. Such a possibility is illustrated with a typology that advances four possible types of organizations regarding spirituality: the soulful organization, the holistic organization, the ascetic organization, and the professional organization. The expression of spirituality in each of these forms is discussed with the aim of contributing to a theoretically-based analysis of organizational spirituality.N/

    Nur77 regulates lipolysis in skeletal muscle cells - Evidence for cross-talk between the beta-adrenergic and an orphan nuclear hormone receptor pathway

    Get PDF
    Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of total body weight and 50% of energy expenditure and is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. Excessive caloric intake is sensed by the brain and induces beta-adrenergic receptor (beta-AR)- mediated adaptive thermogenesis. beta-AR null mice develop severe obesity on a high fat diet. However, the target gene(s), target tissues(s), and molecular mechanism involved remain obscure. We observed that 30 - 60 min of beta-AR agonist ( isoprenaline) treatment of C2C12 skeletal muscle cells strikingly activated (> 100-fold) the expression of the mRNA encoding the nuclear hormone receptor, Nur77. In contrast, the expression of other nuclear receptors that regulate lipid and carbohydrate metabolism was not induced. Stable transfection of Nur77-specific small interfering RNAs (siNur77) into skeletal muscle cells repressed endogenous Nur77 mRNA expression. Moreover, we observed attenuation of gene and protein expression associated with the regulation of energy expenditure and lipid homeostasis, for example AMP-activated protein kinase gamma 3, UCP3, CD36,adiponectin receptor 2, GLUT4, and caveolin-3. Attenuation of Nur77 expression resulted in decreased lipolysis. Finally, in concordance with the cell culture model, injection and electrotransfer of siNur77 into mouse tibialis cranialis muscle resulted in the repression of UCP3 mRNA expression. This study demonstrates regulatory cross-talk between the nuclear hormone receptor and beta-AR signaling pathways. Moreover, it suggests Nur77 modulates the expression of genes that are key regulators of skeletal muscle lipid and energy homeostasis. In conclusion, we speculate that Nur77 agonists would stimulate lipolysis and increase energy expenditure in skeletal muscle and suggest selective activators of Nur77 may have therapeutic utility in the treatment of obesity
    corecore