172 research outputs found

    RARγ is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation

    Get PDF
    Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when activated, promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)γ is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARγ knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice. In contrast, RARα is widely expressed in hematopoietic cells, but RARα knockout mice do not exhibit any HSC or progenitor abnormalities. Primitive hematopoietic precursors overexpressing RARα differentiate predominantly to granulocytes in short-term culture, whereas those overexpressing RARγ exhibit a much more undifferentiated phenotype. Furthermore, loss of RARγ abrogated the potentiating effects of all-trans retinoic acid on the maintenance of HSCs in ex vivo culture. Finally, pharmacological activation of RARγ ex vivo promotes HSC self-renewal, as demonstrated by serial transplant studies. We conclude that the RARs have distinct roles in hematopoiesis and that RARγ is a critical physiological and pharmacological regulator of the balance between HSC self-renewal and differentiation

    Spatial and temporal scales matter when assessing the species and genetic diversity of springtails (Collembola) in Antarctica

    Get PDF
    Seven species of springtail (Collembola) are present in Victoria Land, Antarctica and all have now been sequenced at the DNA barcoding region of the mitochondrial cytochrome c oxidase subunit I gene (COI). Here, we review these sequence data (n = 930) from the GenBank and Barcode of Life Datasystems (BOLD) online databases and provide additional, previously unpublished sequences (n = 392) to assess the geographic distribution of COI variants across all species. Four species (Kaylathalia klovstadi, Cryptopygus cisantarcticus, Friesea grisea, and Cryptopygus terranovus) are restricted to northern Victoria Land and three (Antarcticinella monoculata, Cryptopygus nivicolus, and Gomphiocephalus hodgsoni) are found only in southern Victoria Land, the two biogeographic zones which are separated by the vicinity of the Drygalski Ice Tongue. We found highly divergent lineages within all seven species (range 1.7–14.7%) corresponding to different geographic locations. Levels of genetic divergence for the southern Victoria Land species G. hodgsoni, the most widespread species (~27,000 km2), ranged from 5.9 to 7.3% divergence at sites located within 30 km, but separated by glaciers. We also found that the spatial patterns of genetic divergence differed between species. For example, levels of divergence were much higher for C. terranovus (>10%) than for F. grisea (5%) populations and over 87% of the total genetic variation (based on AMOVA) on either side of a single, 16 km width glacier. Collectively, these data provide evidence for limited dispersal opportunities among populations of springtails due to geological and glaciological barriers (e.g., glaciers and ice tongues). Some locations harbored highly genetically divergent populations and these areas are highlighted from a conservation perspective such as avoidance of human-mediated transport between sites. We conclude that species-specific spatial and temporal scales need to be considered when addressing ecological and physiological questions as well as conservation strategies for Antarctic Collembola

    Biogeography and genetic diversity of terrestrial mites in the Ross Sea region, Antarctica

    Get PDF
    Free-living terrestrial mites (Acari) have persisted through numerous glacial cycles in Antarctica. Very little is known, however, of their genetic diversity and distribution, particularly within the Ross Sea region. To redress this gap, we sampled mites throughout the Ross Sea region, East Antarctica, including Victoria Land and the Queen Maud Mountains (QMM), covering a latitudinal range of 72–85 °S, as well as Lauft Island near Mt. Siple (73 °S) in West Antarctica and Macquarie Island (54oS) in the sub-Antarctic. We assessed genetic diversity using mitochondrial cytochrome c oxidase subunit I gene sequences (COI-5P DNA barcode region), and also morphologically identified voucher specimens. We obtained 130 sequences representing four genera: Nanorchestes (n = 30 sequences), Stereotydeus (n = 46), Coccorhagidia (n = 18) and Eupodes (n = 36). Tree-based analyses (maximum likelihood) revealed 13 genetic clusters, representing as many as 23 putative species indicated by barcode index numbers (BINs) from the Barcode of Life Datasystems (BOLD) database. We found evidence for geographically-isolated cryptic species, e.g., within Stereotydeus belli and S. punctatus, as well as unique genetic groups occurring in sympatry (e.g., Nanorchestes spp. in QMM). Collectively, these data confirm high genetic divergence as a consequence of geographic isolation over evolutionary timescales. From a conservation perspective, additional targeted sampling of understudied areas in the Ross Sea region should be prioritised, as further diversity is likely to be found in these short-range endemic mites

    Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis

    Get PDF
    TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Co-infections determine patterns of mortality in a population exposed to parasite infection

    Get PDF
    Many individual hosts are infected with multiple parasite species, and this may increase or decrease the pathogenicity of the infections. This phenomenon is termed heterologous reactivity and is potentially an important determinant of both patterns of morbidity and mortality and of the impact of disease control measures at the population level. Using infections with Theileria parva (a tick-borne protozoan, related to Plasmodium) in indigenous African cattle [where it causes East Coast fever (ECF)] as a model system, we obtain the first quantitative estimate of the effects of heterologous reactivity for any parasitic disease. In individual calves, concurrent co-infection with less pathogenic species of Theileria resulted in an 89% reduction in mortality associated with T. parva infection. Across our study population, this corresponds to a net reduction in mortality due to ECF of greater than 40%. Using a mathematical model, we demonstrate that this degree of heterologous protection provides a unifying explanation for apparently disparate epidemiological patterns: variable disease-induced mortality rates, age-mortality profiles, weak correlations between the incidence of infection and disease (known as endemic stability), and poor efficacy of interventions that reduce exposure to multiple parasite species. These findings can be generalized to many other infectious diseases, including human malaria, and illustrate how co-infections can play a key role in determining population-level patterns of morbidity and mortality due to parasite infections

    Known and unknown requirements in healthcare

    Get PDF
    We report experience in requirements elicitation of domain knowledge from experts in clinical and cognitive neurosciences. The elicitation target was a causal model for early signs of dementia indicated by changes in user behaviour and errors apparent in logs of computer activity. A Delphi-style process consisting of workshops with experts followed by a questionnaire was adopted. The paper describes how the elicitation process had to be adapted to deal with problems encountered in terminology and limited consensus among the experts. In spite of the difficulties encountered, a partial causal model of user behavioural pathologies and errors was elicited. This informed requirements for configuring data- and text-mining tools to search for the specific data patterns. Lessons learned for elicitation from experts are presented, and the implications for requirements are discussed as “unknown unknowns”, as well as configuration requirements for directing data-/text-mining tools towards refining awareness requirements in healthcare applications
    corecore