757 research outputs found

    Infrared spectroscopy of solid CO-CO2 mixtures and layers

    Get PDF
    The spectra of pure, mixed and layered CO and CO2 ices have been studied systematically under laboratory conditions using infrared spectroscopy. This work provides improved resolution spectra (0.5 cm-1) of the CO2 bending and asymmetric stretching mode, as well as the CO stretching mode, extending the existing Leiden database of laboratory spectra to match the spectral resolution reached by modern telescopes and to support the interpretation of the most recent data from Spitzer. It is shown that mixed and layered CO and CO2 ices exhibit very different spectral characteristics, which depend critically on thermal annealing and can be used to distinguish between mixed, layered and thermally annealed CO-CO2 ices. CO only affects the CO2 bending mode spectra in mixed ices below 50K under the current experimental conditions, where it exhibits a single asymmetric band profile in intimate mixtures. In all other ice morphologies the CO2 bending mode shows a double peaked profile, similar to that observed for pure solid CO2. Conversely, CO2 induces a blue-shift in the peak-position of the CO stretching vibration, to a maximum of 2142 cm-1 in mixed ices, and 2140-2146 cm-1 in layered ices. As such, the CO2 bending mode puts clear constraints on the ice morphology below 50K, whereas beyond this temperature the CO2 stretching vibration can distinguish between initially mixed and layered ices. This is illustrated for the low-mass YSO HH46, where the laboratory spectra are used to analyse the observed CO and CO2 band profiles and try to constrain the formation scenarios of CO2.Comment: Accepted in A&

    Seismic anisotropy in the Sumatra subduction zone

    Get PDF
    An important tool for understanding deformation occurring within a subduction zone is the measurement of seismic anisotropy through observations of shear wave splitting (SWS). In Sumatra, two temporary seismic networks were deployed between December 2007 and February 2009, covering the fore arc between the fore-arc islands to the back arc. We use SKS and local SWS measurements to determine the type, amount, and location of anisotropy. Local SWS measurements from the fore-arc islands exhibit trench-parallel fast directions which can be attributed to shape preferred orientation of cracks/fractures in the overriding sediments. In the Sumatran Fault region, the predominant fast direction is fault/trench parallel, while in the back-arc region it is trench perpendicular. The trench-perpendicular measurements exhibit a positive correlation between delay time and raypath length in the mantle wedge, while the fault-parallel measurements are similar to the fault-parallel fast directions observed for two crustal events at the Sumatran Fault. This suggests that there are two layers of anisotropy: one due to entrained flow within the mantle wedge and a second layer within the overriding crust due to the shear strain caused by the Sumatran Fault. SKS splitting results show a NNW-SSE fast direction with delay times of 0.8–3.0 s. The fast directions are approximately parallel to the absolute plate motion of the subducting Indo-Australian Plate. The small delay times exhibited by the local SWS (0.05–0.45 s), in combination with the large SKS delay times, suggest that the anisotropy generating the teleseismic SWS is dominated by entrained flow in the asthenosphere below the slab

    Prospects for Improving the Intrinsic and Extrinsic Properties of Magnesium Diboride Superconducting Strands

    Full text link
    The magnetic and transport properties of magnesium diboride films represent performance goals yet to be attained by powder-processed bulk samples and conductors. Such performance limits are still out of the reach of even the best magnesium diboride magnet wire. In discussing the present status and prospects for improving the performance of powder-based wire we focus attention on (1) the intrinsic (intragrain) superconducting properties of magnesium diboride, Hc2 and flux pinning, (2) factors that control the efficiency with which current is transported from grain-to-grain in the conductor, an extrinsic (intergrain) property. With regard to Item-(1), the role of dopants in Hc2 enhancement is discussed and examples presented. On the other hand their roles in increasing Jc, both via Hc2 enhancement as well as direct fluxoid/pining-center interaction, are discussed and a comprehensive survey of Hc2 dopants and flux-pinning additives is presented. Current transport through the powder-processed wire (an extrinsic property) is partially blocked by the inherent granularity of the material itself and the chemical or other properties of the intergrain surfaces. These and other such results indicate that in many cases less than 15% of the conductor's cross sectional area is able to carry transport current. It is pointed out that densification in association with the elimination of grain-boundary blocking phases would yield five-to ten-fold increases in Jc in relevant regimes, enabling the performance of magnesium diboride in selected applications to compete with that of Nb-Sn

    Field-Dependent Tilt and Birefringence of Electroclinic Liquid Crystals: Theory and Experiment

    Get PDF
    An unresolved issue in the theory of liquid crystals is the molecular basis of the electroclinic effect in the smectic-A phase. Recent x-ray scattering experiments suggest that, in a class of siloxane-containing liquid crystals, an electric field changes a state of disordered molecular tilt in random directions into a state of ordered tilt in one direction. To investigate this issue, we measure the optical tilt and birefringence of these liquid crystals as functions of field and temperature, and we develop a theory for the distribution of molecular orientations under a field. Comparison of theory and experiment confirms that these materials have a disordered distribution of molecular tilt directions that is aligned by an electric field, giving a large electroclinic effect. It also shows that the net dipole moment of a correlated volume of molecules, a key parameter in the theory, scales as a power law near the smectic-A--smectic-C transition.Comment: 18 pages, including 9 postscript figures, uses REVTeX 3.0 and epsf.st

    The structure of the Sumatran Fault revealed by local seismicity

    Get PDF
    [1] The combination of the Sunda megathrust and the (strike-slip) Sumatran Fault (SF) represents a type example of slip-partitioning. However, superimposed on the SF are geometrical irregularities that disrupt the local strain field. The largest such feature is in central Sumatra where the SF splits into two fault strands up to 35 km apart. A dense local network was installed along a 350 km section around this bifurcation, registering 1016 crustal events between April 2008 and February 2009. 528 of these events, with magnitudes between 1.1 and 6.0, were located using the double-difference relative location method. These relative hypocentre locations reveal several new features about the crustal structure of the SF. Northwest and southeast of the bifurcation, where the SF has only one fault strand, seismicity is strongly focused below the surface trace, indicating a vertical fault that is seismogenic to ∼15 km depth. By contrast intense seismicity is observed within the bifurcation, displaying streaks in plan and cross-section that indicate a complex system of faults bisecting the bifurcation. In combination with analysis of topography and focal mechanisms, we propose that the bifurcation is a strike-slip duplex system with complex faulting between the two main fault branches

    Close Packing of Atoms, Geometric Frustration and the Formation of Heterogeneous States in Crystals

    Full text link
    To describe structural peculiarities in inhomogeneous media caused by the tendency to the close packing of atoms a formalism based on the using of the Riemann geometry methods (which were successfully applied lately to the description of structures of quasicrystals and glasses) is developed. Basing on this formalism we find in particular the criterion of stability of precipitates of the Frank-Kasper phases in metallic systems. The nature of the ''rhenium effect'' in W-Re alloys is discussed.Comment: 14 pages, RevTex, 2 PostScript figure

    Drawing induced texture and the evolution of superconductive properties with heat treatment time in powder-in-tube in-situ processed MgB2 strands

    Full text link
    Monocore powder-in-tube MgB2 strands were cold-drawn and heat-treated at 600C and 700C for times of up to 71 hours and structure-property relationships examined. Drawing-induced elongation of the Mg particles led, after HT, to a textured macrostructure consisting of elongated polycrystalline MgB2 fibers separated by elongated pores. The superconducting Tc, Jc and Fp were correlated with the macrostructure and grain size. Grain size increased with HT time at both 600C and 700C. Jc and hence Fp decreased monotonically but not linearly with grain size. Overall, it was observed that at 700C, the MgB2 reaction was more or less complete after as little as 30 min; at 600C, full reaction completion did not occur until 71 h. into the HT. Transport, Jct(B) was measured in a perpendicular applied field, and the magnetic critical current densities, Jcm\bot(B) and Jcm{\phi}(B), were measured in perpendicular and parallel (axial) applied fields, respectively. Particularly noticeable was the premature dropoff of Jcm\bot(B) at fields well below the irreversibility field of Jct(B). This effect is attributed to the fibrous macrostructure and its accompanying anisotropic connectivity. Magnetic measurements with the field directed along the strand axis yielded a critical density, Jcm\bot(B), for current flowing transversely to the strand axis that was less than and dropped off more rapidly than Jct(B). In the conventional magnetic measurement, the loop currents that support the magnetization are restricted by the lower of Jct(B) and Jcm{\phi} (B). In the present case the latter, leading to the premature dropoff of the measured Jcm(B) compared to Jct(B) with increasing field. This result is supported by Kramer plots of the Jcm{\phi} (B) and Jct(B) data which lead to an irreversibility field for transverse current that is very much less than the usual transport-measured longitudinal one, Birr,t.Comment: 41 pages, 14 figure

    Anisotropic Connectivity and its Influence on Critical Current Densities, Irreversibility Fields, and Flux Creep in In-Situ-Processed MgB2 Strands

    Full text link
    The anisotropy of the critical current density (Jc) and its influence on measurement of irreversibility field (Birr) has been investigated for high quality, in-situ MgB2 strands. Comparison of transport and magnetization measurements has revealed the onset of a regime where large differences exist between transport and magnetically measured values of the critical current density and Birr. These effects, initially unexpected due to the lack of crystalline texture in these in-situ processed strands, appear to be due to a fibrous microstructure, connected with the details of the wire fabrication and MgB2 formation reactions. Scanning electron micrographs of in-situ-processed MgB2 monocore strands have revealed a fibrous microstructure. Grains (~100 nm) are randomly oriented, and there is no apparent local texture of the grains. However, this randomly oriented polycrystalline material has a fibrous texture at a larger length scale, with stringers of MgB2 (~ 60 {\mu}m long and ~5 {\mu}m in diameter) partially separated by elongated pores -- the spaces previously occupied by stringers of elemental Mg. This leads to an interpretation of the differences observed in transport and magnetically determined critical currents, in particular a large deviation between the two at higher fields, in terms of different transverse and longitudinal connectivities within the strand. The different values of connectivity also lead to different resistive transition widths, and thus irreversibility field values, as measured by transport and magnetic techniques. Finally, these considerations are seen to influence estimated pinning potentials for the strands.Comment: 43 Pages, 11 Figures, accepted by Supercon. Sci. Tec

    The clumpy structure of the chemically active L1157 outflow

    Get PDF
    We present high spatial resolution maps, obtained with the Plateau de Bure Interferometer, of the blue lobe of the L1157 outflow. We observed four lines at 3 mm, namely CH3OH (2_K-1_K), HC3N (11-10), HCN (1-0) and OCS (7-6). Moreover, the bright B1 clump has also been observed at better spatial resolution in CS (2-1), CH3OH (2_1-1_1)A-, and 34SO (3_2-2_1). These high spatial resolution observations show a very rich structure in all the tracers, revealing a clumpy structure of the gas superimposed to an extended emission. In fact, the three clumps detected by previous IRAM-30m single dish observations have been resolved into several sub-clumps and new clumps have been detected in the outflow. The clumps are associated with the two cavities created by two shock episodes driven by the precessing jet. In particular, the clumps nearest the protostar are located at the walls of the younger cavity with a clear arch-shape form while the farthest clumps have slightly different observational characteristics indicating that they are associated to the older shock episode. The emission of the observed species peaks in different part of the lobe: the east clumps are brighter in HC3N (11-10), HCN (1-0) and CS (2-1) while the west clumps are brighter in CH3OH(2_K-1_K), OCS (7-6) and 34SO (3_2-2_1). This peak displacement in the line emission suggests a variation of the physical conditions and/or the chemical composition along the lobe of the outflow at small scale, likely related to the shock activity and the precession of the outflow. In particular, we observe the decoupling of the silicon monoxide and methanol emission, common shock tracers, in the B1 clump located at the apex of the bow shock produced by the second shock episode.Comment: 11 pages, 8 figures, accepted for publication in the MNRA

    An ultracold molecular beam for testing fundamental physics

    Full text link
    We use two-dimensional transverse laser cooling to produce an ultracold beam of YbF molecules. Through experiments and numerical simulations, we study how the cooling is influenced by the polarization configuration, laser intensity, laser detuning and applied magnetic field. The ultracold part of the beam contains more than 2×1052 \times 10^5 molecules per shot and has a temperature below 200 μ\muK, and the cooling yields a 300-fold increase in the brightness of the beam. The method can improve the precision of experiments that use molecules to test fundamental physics. In particular, the beam is suitable for measuring the electron electric dipole moment with a statistical precision better than 10−3010^{-30} e cm.Comment: 25 pages, 14 figures. Trajectory simulations added and results compared to experiment; other minor revision
    • …
    corecore