100 research outputs found

    Invited Article: First Flight in Space of a Wide-Field-of-View Soft X-Ray Imager Using Lobster-Eye Optics: Instrument Description and Initial Flight Results

    Get PDF
    We describe the development, launch into space, and initial results from a prototype wide eld-of-view (FOV) soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The Sheath Transport Observer for the Redistribution of Mass (STORM) is the rst instrument using this type of optics launched into space and provides proof-of-concept for future ight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the moon, and the solar wind interaction with planetary bodies like Venus and Mars

    Discriminating between the origins of remotely sensed circular structures:carbonate mounds, diapirs or periclinal folds? Purbeck Limestone Group, Weymouth Bay, UK

    Get PDF
    Many sedimentary rock successions contain plan-view circular structures, such as impacts, diapirs and carbonate build-ups. When remotely sensed, it can be difficult to discriminate between their formation mechanisms. Here we examine this problem by assessing the origins of circular structures imaged in high-resolution multibeam bathymetric data from Weymouth Bay, UK. The imagery shows 30–150 m across, concave-down structures within the upper Purbeck Limestone Group on the southern limb of the Purbeck Anticline. Similar structures have not been identified in the extensive outcrops around the bay. The morphology and geological setting of the structures are consistent with three different interpretations: carbonate mounds, periclinal folds and evaporite diapirs. However, none of these structures has been previously recorded in the upper Purbeck Limestone Group outcrops of this internationally renowned geological region. We apply a scoring system to 25 features of the circular structures to discriminate between these three alternative interpretations. This analysis indicates that evaporite diapirs are the least likely and carbonate mounds the most likely origin of the structures. The presence of carbonate mounds revises the upper Purbeck palaeofacies distribution in its type area and provides an analogue for the exploration for hydrocarbon reservoirs in lacustrine mounds

    Variable water input controls evolution of the Lesser Antilles volcanic arc

    Get PDF
    Oceanic lithosphere carries volatiles, notably water, into the mantle through subduction at convergent plate boundaries. This subducted water exercises control on the production of magma, earthquakes, formation of continental crust and mineral resources. Identifying different potential fluid sources (sediments, crust and mantle lithosphere) and tracing fluids from their release to the surface has proved challenging1. Atlantic subduction zones are a valuable endmember when studying this deep water cycle because hydration in Atlantic lithosphere, produced by slow spreading, is expected to be highly non-uniform2. Here, as part of a multi-disciplinary project in the Lesser Antilles volcanic arc3, we studied boron trace element and isotopic fingerprints of melt inclusions. These reveal that serpentine—that is, hydrated mantle rather than crust or sediments—is a dominant supplier of subducted water to the central arc. This serpentine is most likely to reside in a set of major fracture zones subducted beneath the central arc over approximately the past ten million years. The current dehydration of these fracture zones coincides with the current locations of the highest rates of earthquakes and prominent low shear velocities, whereas the preceding history of dehydration is consistent with the locations of higher volcanic productivity and thicker arc crust. These combined geochemical and geophysical data indicate that the structure and hydration of the subducted plate are directly connected to the evolution of the arc and its associated seismic and volcanic hazards

    Delta1 Expression, Cell Cycle Exit, and Commitment to a Specific Secretory Fate Coincide within a Few Hours in the Mouse Intestinal Stem Cell System

    Get PDF
    The stem cells of the small intestine are multipotent: they give rise, via transit-amplifying cell divisions, to large numbers of columnar absorptive cells mixed with much smaller numbers of three different classes of secretory cells - mucus-secreting goblet cells, hormone-secreting enteroendocrine cells, and bactericide-secreting Paneth cells. Notch signaling is known to control commitment to a secretory fate, but why are the secretory cells such a small fraction of the population, and how does the diversity of secretory cell types arise? Using the mouse as our model organism, we find that secretory cells, and only secretory cells, pass through a phase of strong expression of the Notch ligand Delta1 (Dll1). Onset of this Dll1 expression coincides with a block to further cell division and is followed in much less than a cell cycle time by expression of Neurog3 – a marker of enteroendocrine fate – or Gfi1 – a marker of goblet or Paneth cell fate. By conditional knock-out of Dll1, we confirm that Delta-Notch signaling controls secretory commitment through lateral inhibition. We infer that cells stop dividing as they become committed to a secretory fate, while their neighbors continue dividing, explaining the final excess of absorptive over secretory cells. Our data rule out schemes in which cells first become committed to be secretory, and then diversify through subsequent cell divisions. A simple mathematical model shows how, instead, Notch signaling may simultaneously govern the commitment to be secretory and the choice between alternative modes of secretory differentiation

    Differential Kinetics of Immune Responses Elicited by Covid-19 Vaccines

    Get PDF
    To the Editor: Previous studies have shown that the BNT162b2 (Pfizer–BioNTech), mRNA-1273 (Moderna), and Ad26.COV2.S (Johnson & Johnson–Janssen) vaccines provide robust protective efficacy against coronavirus disease 2019 (Covid-19). Here, we report comparative kinetics of humoral and cellular immune responses elicited by the two-dose BNT162b2 vaccine (in 31 participants), the two-dose mRNA-1273 vaccine (in 22 participants), and the one-dose Ad26.COV2.S vaccine (in 8 participants). We evaluated antibody and T-cell responses from peak immunity at 2 to 4 weeks after the second immunization in recipients of the messenger RNA (mRNA) vaccines or after the first immunization in recipients of the Ad26.COV2.S vaccine to 8 months (Table S1 in the Supplementary Appendix, available with the full text of this letter at NEJM.org)

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
    • …
    corecore