
                          Goes, S., Collier, J. S., Blundy, J., Davidson, J., Harmon, N., Henstock, T. J.,
... Wilson, M. (2019). Project VoiLA: Volatile Recycling in the Lesser
Antilles. Eos, 100. https://doi.org/10.1029/2019EO117309

Peer reviewed version

License (if available):
CC BY

Link to published version (if available):
10.1029/2019EO117309

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Wiley at https://eos.org/project-updates/project-voila-the-volatile-recycling-in-the-lesser-antilles. Please refer
to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1029/2019EO117309
https://doi.org/10.1029/2019EO117309
https://research-information.bris.ac.uk/en/publications/project-voila(d901f375-e113-468f-80be-1fc170ad5f49).html
https://research-information.bris.ac.uk/en/publications/project-voila(d901f375-e113-468f-80be-1fc170ad5f49).html


 1 

Project VoiLA: Volatile Recycling in the Lesser Antilles 
 

Deep water cycle studies have largely focussed on subduction of lithosphere formed 
at fast spreading ridges. However, oceanic plates are more likely to become 
hydrated as spreading rate decreases.  
 

 
The Quill Volcano on St. Eustatius Island. Credit: George Cooper. 
 
At mid-ocean ridges, such as the one that runs along the full length of and 3 
kilometers below the surface of the Atlantic Ocean, new oceanic plate material forms 
as the plates on either side are pulled apart and hot underlying mantle rises to fill the 
space. Material spreading from the ridge cools into an increasingly thick plate, topped 
by a crust of solidified mantle melts. Below the Pacific, spreading can reach speeds of 
over 15 centimeters per year. However, the plates pull apart slower below the 
Atlantic, at rates of only a few centimeters per year. This leads to cooler plates with 
less melting and more fracturing, which provides additional pathways for water to 
enter the plate. Upon reaching a subduction zone, where plate convergence forces one 
plate to dive below the other, the sinking plate will heat up and get squeezed, resulting 
in release of some or all of its water into the deeper Earth. Scientists have studied this 
subduction-water cycle the fast-spreading Pacific. Now, our Volatile Recycling in the 
Lesser Antilles (VoiLA) project targets one of only two zones that currently subduct 
lithosphere formed by slow spreading in the Atlantic. 
 
The Earth’s deep cycle of volatiles, of which H2O, CO2 and sulphur are the most 
important constituents, is key to understanding the origins of life, the formation of 
continents, the generation of metalliferous resources, and the most violent geohazards. 
Subducting plates are important in this cycle, carrying volatiles from the Earth’s 
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surface into the mantle as fluids trapped in pores found in sediments and crust, as well 
as in volatile-bearing minerals in the deeper plate. As plates sink and heat up, released 
fluids can trigger seismicity and induce melting within the subducted plate and in the 
overlying mantle wedge. This type of melting selectively concentrates volatiles and 
transports them into the overlying plate. If an eruption occurs, the cycle then returns 
the volatiles into the oceans and atmosphere (Fig. 1).  
 

 
Fig. 1. Schematic diagram of the Antilles subduction zone showing the input of volatiles at 
fracture zones, oceanic core complexes (where mantle rather than crustal rocks are exposed 
at the seafloor) and bending faults (light green) and partial release due to breakdown of 
volatile-bearing phases below the forearc and arc (light blue), affecting seismicity (red stars). 
Volatiles (like H2O and CO2) percolating into the mantle wedge will react and cause melting. 
Melts will ascend via porous flow/diapirs to interact with the crust and possibly erupt. Part of 
the volatile budget will remain trapped in the subducting plate to be carried to great depths. 
Credit: Saskia Goes 
 

Exactly where and how volatiles are released and how they modify the host rock 
remains an area of intense research. Much of a plate’s hydration is acquired at mid-
ocean ridges. In the slowly spreading Atlantic lithosphere, the plate is hydrated more 
pervasively and heterogeneously than the fast spreading Pacific lithosphere (Fig. 2). 
Therefore, expressions of volatiles are likely to be more pronounced during the 
subduction of lithosphere that is formed by slow spreading. Today, subduction is 
predominantly consuming lithosphere formed at relatively fast spreading ridges. 
However, in the past, when the Tethys Ocean was being subducted, slow spreading 
was common.  
 
We investigate how the volatile cycle for the little-studied subduction in the Atlantic 
differs from that in subduction zones in the Pacific (which has been extensively 
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studied by efforts like GeoPRISMS). We do so by targeting the Lesser Antilles, 
located in the Caribbean Sea.  
 
Hydration of Slow- vs. Fast-spreading Oceanic Lithosphere 
 
Mid-ocean ridge research has revealed that the character of oceanic lithosphere 
changes strongly with spreading rate (Fig. 2). Classical magmatic accretion dominates 
at fast-spreading ridges. In contrast, at slow-spreading ridges much of the extension is 
taken up by faulting. The nature of this faulting varies along strike depending on the 
melt supply. When supply is low, large-scale detachment faults form that bring 
mantle rocks up to the seabed. Both processes tend to occur at seafloor-spreading 
segment ends and substantially increase the hydration potential of the oceanic 
lithosphere, as hydrous, or serpentinised, mantle can hold 2-3 times as much water as 
the equivalent volume of basaltic crust. Additional hydration occurs along transforms, 
where the cool thermal state of slow-spread lithosphere provides conditions for deep 
hydration, augmenting along-strike variations in its volatile budget. 
 

 
Fig. 2. Schematic diagram illustrating the contrasting structure and hydration of lithosphere 
formed at fast and slow spreading ridges, with representative Pacific and Atlantic bathymetry 
on top, and two cross sections: one mid-segment and one near a fracture-zone. Left: Pacific-
type spreading with relatively smooth bathymetry and axial high, and crust comprising pillow 
basalts, sheeted dykes and gabbros underlain by mantle lithosphere. Igneous crust is shown 
in brown colours, mantle rocks in greens, and hydrated lithologies in light colours with 
stipples. Right: Atlantic-type spreading with highly tectonised topography, an axial valley at 
the ridge and pervasive hydration along the large-scale detachment faults as well as in 
oceanic core complexes that expose mantle rocks at the surface. Atlantic lithosphere thickens 
and cools more over the same lateral distance and thus provides conditions along fracture 
zones for deeper seismicity, brittle faulting, water penetration and serpentinisation than 
Pacific lithosphere. Credit: Jenny Collier and Saskia Goes 
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The Antilles subduction end-member 

 

Understanding volatile cycling in subduction zones requires scientists to synthesize 
observations from different settings with contrasting incoming plate age, spreading 
rate, degree of sedimentation, fracture zone density, and plate bending. Of the few 
zones presently subducting slow-spread lithosphere, none has been studied with a 
comprehensive multi-disciplinary effort.  
 
Our VoiLA experiment, funded by the UK Natural Environment Research Council, 
targets the Antilles subduction zone, which consumes slow-spread lithosphere with a 
number of very pronounced fracture zones (Fig. 3). It also subducts old plate at an 
unusually slow rate. There are appreciable differences in sediment thickness and 
composition along the arc, owing to the large supply of terrestrial sediment in the 
south from the Orinoco River. Plate coupling and earthquake productivity are 
strongest in the north, often attributed to variable input of fluids and/or sediments. 
The volcanic islands vary significantly in size, evidence of variable long-term 
magmatic productivity, possibly linked to variable slab dehydration. A few previous 
studies [Schlaphorst et al., 2016; Paulatto et al., 2017] found along-arc variations in 
seismicity rates and seismic velocity structure in the slab and overlying mantle wedge 
that may correlate with fracture zone distribution. 
 

 
Fig. 3. Bathymetric/topographic map from the Mid-Atlantic Ridge to the Antilles Arc, 
showing the arc and trench, location of the VoiLA multi-channel seismic reflection and wide-
angle seismic refraction lines, locations of the broadband ocean bottom seismometers 
(BBOBS) and island stations, as well as the islands where new rock samples were collected. 
The submarine Kick’em Jenny volcano (KeJ), Orinoco River Delta (Or), Grenada Basin 
(GB), and largest Lesser Antilles islands and others mentioned in the text are labelled, from 
northwest to southeast: StM – St Martin, StE- St Eustatius, KN – St Kitts and Nevis, Gu – 
Guadeloupe, Dé – La Désirade, Do – Dominica, Ma – Martinique, StL – St Lucia, StV – St. 
Vincent, Gs - Grenadines, Gr – Grenada. Credit: Jenny Collier 
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The VoiLA project 
 
Our project (October 2015-March 2021) is comprised of two marine scientific cruises 
on the RRS James Cook (JC133 and JC149), temporary seismic deployments on the 
islands, geological fieldwork, geochemical and petrological analyses and numerical 
modelling (Fig. 3).  
 
Between March 2016 and May 2017, we deployed 24 German DEPAS trillium 
compact and 10 Scripps trillium 240s broadband ocean bottom seismometers 
(BBOBS) on the Lesser Antilles arc, forearc, and back arc. Thirty-two of these 
instruments successfully recorded natural earthquake data, as well as the airgun shots 
from two along-arc lines (Fig. 3). All 8 stations deployed on the southern islands, 
from St. Lucia to Grenada, recorded earthquakes between January 2017 and January 
2018 and 7 registered the arc-back-arc shots. Nine of ten stations deployed on 
Guadeloupe-Martinique from Oct 2016 until March 2017 recorded earthquake data 
for at least part of this time. The BBOBS data quality is excellent, with low noise 
levels comparable to many land stations, and the island stations exhibit noise levels 
only slightly higher than permanent island stations.  
 
During JC149, we shot three active-source wide-angle refraction lines and 
supplementary multi-channel reflection lines on the incoming plate to survey 
structures across the fracture zones and to determine where the plate bends into the 
trench. We successfully recorded data with 133 instruments from the German DEPAS 
and UK Ocean-Bottom Instrumentation Facility. Here too, data quality is excellent 
and early travel-time models show a strong contrast in seismic velocity structure 
across the medium-offset fracture zones.  
 
In addition, we collected gravity, magnetic, and bathymetry data throughout the two 
cruises and dredged a number of samples from one of the bathymetric ridges. We 
surveyed underwater volcano Kick-em Jenny using swath bathymetry on both cruises, 
bracketing its most recent eruption [Allen et al., 2018]. We conducted geological 
fieldwork on St. Martin, St. Kitts, Nevis, Guadeloupe, and La Désirade to collect 
mafic volcanic material to target melt inclusions and to complement the existing, 
extensive Bristol/Durham collections of volcanic and xenolith samples along the arc. 
Initial results from VoiLA surface wave imaging and Wadati-Benioff seismicity 
relocation indicate pronounced and variable fluid signatures along the arc. 
 
Future work  
 
In ongoing work, we are imaging the structure of the incoming plate to test the extent 
of hydration and serpentinisation near fracture zones and during plate bending. We 
will improve the characterisation of seismicity in and between this and the upper plate 
to aid insight into the region’s poorly-characterised seismic hazard. A combination of 
active and passive-source seismic data will provide new constraints on the highly 
variable crustal structure along the arc and the enigmatic back-arc Grenada basin. We 
plan to use arc structure combined with petrologic and geochemical data to 
investigate the source and depth of melt generation, its transport and evolution. Body-
wave, surface-wave and attenuation tomography and imaging of seismic anisotropy in 
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the mantle wedge, together with geochemical analyses and thermal and flow models, 
will help constrain mantle flow and fluid pathways. We are analysing volcanic 
samples for trace elements including ore metals, boron isotopes and volatile contents, 
with a particular focus on how along-arc variations may be coupled to the structure 
and hydration state of the incoming plate.  
 
Our passive seismic data set should be ready to be archived and made generally 
available through IRIS by June 2021. Underway geophysical data will be accessible 
via the British Oceanographic Data Centre. Geochemical data will be added to 
GeoROC. Our website will provide further updates and outcomes.  
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