8 research outputs found

    Where Is More Important Than How in Coastal and Marine Ecosystems Restoration

    Full text link
    Restoration is considered an effective strategy to accelerate the recovery of biological communities at local scale. However, the effects of restoration actions in the marine ecosystems are still unpredictable.We performed a global analysis of published literature to identify the factors increasing the probability of restoration success in coastal and marine systems. Our results confirm that the majority of active restoration initiatives are still concentrated in the northern hemisphere and that most of information gathered from restoration efforts derives from a relatively small subset of species. The analysis also indicates that many studies are still experimental in nature, covering small spatial and temporal scales. Despite the limits of assessing restoration effectiveness in absence of a standardized definition of success, the context (degree of human impact, ecosystem type, habitat) of where the restoration activity is undertaken is of greater relevance to a successful outcome than how (method) the restoration is carried out. Contrary to expectations, we found that restoration is not necessarily more successful closer to protected areas (PA) and in areas of moderate human impact. This result can be motivated by the limits in assessing the success of interventions and by the tendency of selecting areas in more obvious need of restoration, where the potential of actively restoring a degraded site is more evident. Restoration sites prioritization considering human uses and conservation status present in the region is of vital importance to obtain the intended outcomes and galvanize further actions

    First-in-human PeriCord cardiac bioimplant : scalability and GMP manufacturing of an allogeneic engineered tissue graft

    Get PDF
    Altres ajuts: La Marat贸 de TV3 Foundation, Government of Catalonia, Catalan Society of Cardiology, "La Caixa" Banking Foundation, Spanish Ministry of Science, Innovation and Universities, Institute of Health Carlos III, and the European Regional Development Fund.Small cardiac tissue engineering constructs show promise for limiting post-infarct sequelae in animal models. This study sought to scale-up a 2-cm 2 preclinical construct into a human-size advanced therapy medicinal product (ATMP; PeriCord), and to test it in a first-in-human implantation. The PeriCord is a clinical-size (12-16 cm 2) decellularised pericardial matrix colonised with human viable Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs). WJ-MSCs expanded following good manufacturing practices (GMP) met safety and quality standards regarding the number of cumulative population doublings, genomic stability, and sterility. Human decellularised pericardial scaffolds were tested for DNA content, matrix stiffness, pore size, and absence of microbiological growth. PeriCord implantation was surgically performed on a large non-revascularisable scar in the inferior wall of a 63-year-old male patient. Coronary artery bypass grafting was concomitantly performed in the non-infarcted area. At implantation, the 16-cm 2 pericardial scaffold contained 12路5 脳 10 6 viable WJ-MSCs (85路4% cell viability; <0路51 endotoxin units (EU)/mL). Intraoperative PeriCord delivery was expeditious, and secured with surgical glue. The post-operative course showed non-adverse reaction to the PeriCord, without requiring host immunosuppression. The three-month clinical follow-up was uneventful, and three-month cardiac magnetic resonance imaging showed ~9% reduction in scar mass in the treated area. This preliminary report describes the development of a scalable clinical-size allogeneic PeriCord cardiac bioimplant, and its first-in-human implantation. La Marat贸 de TV3 Foundation, Government of Catalonia, Catalan Society of Cardiology, "La Caixa" Banking Foundation, Spanish Ministry of Science, Innovation and Universities, Institute of Health Carlos III, and the European Regional Development Fund

    Hacia el estudio y la gesti贸n pesquera basada en los ecosistemas

    No full text
    La pesca marina ha existido desde hace milenios. Sin embargo, no ha sido hasta principios del siglo XX, y sobre todo despu茅s de la Segunda Guerra Mundial, cuando se ha desarrollado de forma intensa y con car谩cter industrial. Esto ha sucedido gracias a la implementaci贸n de nuevas tecnolog铆as, la expansi贸n de la actividad pesquera hacia 谩reas no explotadas y la captura de especies menos accesibles o inicialmente menos valoradasPeer reviewe

    La pesca marina en el mar Mediterr谩neo

    No full text

    Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts (Maps - Raw data)

    Full text link
    Mapes sobre diferents tipus d鈥檌mpactes en tot el Mar Mediterrani. Dades prim脿ries (mapes) associades a un article acceptat per la revista Scientific Reports (2018). Publicat a: https://doi.org/10.1038/s41598-018-33237-wDades prim脿ries (mapes) associades a un article publicat a la revista Scientific Reports, 2018, vol. 8. http://doi.org/10.1038/s41598-018-33237-

    Feeding ecology and trophic position of three sympatric demersal chondrichthyans in the Northwestern Mediterranean.

    No full text
    Understanding how marine predators interact is a scientific challenge. In marine ecosystems, segregation in feeding habits has been largely described as a common mechanism to allow the coexistence of several competing marine predators. However, little is known about the feeding ecology of most species of chondrichthyans, which play a pivotal role in the structure of marine food webs worldwide. In this study, we examined the trophic ecology of 3 relatively abundant chondrichthyans coexisting in the Mediterranean Sea: the blackmouth catshark Galeus melastomus , the velvet belly lanternshark Etmopterus spinax and the rabbit fish Chimaera monstrosa. To examine their trophic ecology and interspecific differences in food habits, we combined the analysis of stomach content and stable isotopes. Our results highlighted a trophic segregation between C. monstrosa and the other 2 species. G. melastomus showed a diet composed mainly of cephalopods, while E. spinax preyed mainly on shrimps and C. monstrosa on crabs. Interspecific differences in the trophic niche were likely due to different feeding capabilities and body size. Each species showed different isotopic niche space and trophic level. Specifically, C. monstrosa showed a higher trophic level than E. spinax and G. melastomus. The high trophic levels of the 3 species highlighted their important role as predators in the marine food web. Our results illustrate the utility of using complementary approaches that provide information about the feeding behaviour at short (stomach content) and long-term scales (stable isotopes), which could allow more efficient monitoring of marine food-web changes in the study area

    First-in-human PeriCord cardiac bioimplant : scalability and GMP manufacturing of an allogeneic engineered tissue graft

    No full text
    Altres ajuts: La Marat贸 de TV3 Foundation, Government of Catalonia, Catalan Society of Cardiology, "La Caixa" Banking Foundation, Spanish Ministry of Science, Innovation and Universities, Institute of Health Carlos III, and the European Regional Development Fund.Small cardiac tissue engineering constructs show promise for limiting post-infarct sequelae in animal models. This study sought to scale-up a 2-cm 2 preclinical construct into a human-size advanced therapy medicinal product (ATMP; PeriCord), and to test it in a first-in-human implantation. The PeriCord is a clinical-size (12-16 cm 2) decellularised pericardial matrix colonised with human viable Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs). WJ-MSCs expanded following good manufacturing practices (GMP) met safety and quality standards regarding the number of cumulative population doublings, genomic stability, and sterility. Human decellularised pericardial scaffolds were tested for DNA content, matrix stiffness, pore size, and absence of microbiological growth. PeriCord implantation was surgically performed on a large non-revascularisable scar in the inferior wall of a 63-year-old male patient. Coronary artery bypass grafting was concomitantly performed in the non-infarcted area. At implantation, the 16-cm 2 pericardial scaffold contained 12路5 脳 10 6 viable WJ-MSCs (85路4% cell viability; <0路51 endotoxin units (EU)/mL). Intraoperative PeriCord delivery was expeditious, and secured with surgical glue. The post-operative course showed non-adverse reaction to the PeriCord, without requiring host immunosuppression. The three-month clinical follow-up was uneventful, and three-month cardiac magnetic resonance imaging showed ~9% reduction in scar mass in the treated area. This preliminary report describes the development of a scalable clinical-size allogeneic PeriCord cardiac bioimplant, and its first-in-human implantation. La Marat贸 de TV3 Foundation, Government of Catalonia, Catalan Society of Cardiology, "La Caixa" Banking Foundation, Spanish Ministry of Science, Innovation and Universities, Institute of Health Carlos III, and the European Regional Development Fund
    corecore