110 research outputs found

    Fluorescence spectroscopy and multi-way techniques. PARAFAC

    Get PDF
    PARAllel FACtor analysis (PARAFAC) is increasingly used to decompose fluorescence excitation emission matrices (EEMs) into their underlying chemical components. In the ideal case where fluorescence conforms to Beers Law, this process can lead to the mathematical identification and quantification of independently varying fluorophores. However, many practical and analytical hurdles stand between EEM datasets and their chemical interpretation. This article provides a tutorial in the practical application of PARAFAC to fluorescence datasets, demonstrated using a dissolved organic matter (DOM) fluorescence dataset. A new toolbox for MATLAB is presented to support improved visualisation and sensitivity analyses of PARAFAC models in fluorescence spectroscopy. © 2013 The Royal Society of Chemistry

    Evidence of local and regional freshening of Northeast Greenland coastal waters

    Get PDF
    The supply of freshwater to fjord systems in Greenland is increasing as a result of climate change-induced acceleration in ice sheet melt. However, insight into the marine implications of the melt water is impaired by lack of observations demonstrating the fate of freshwater along the Greenland coast and providing evaluation basis for ocean models. Here we present 13 years of summer measurements along a 120 km transect in Young Sound, Northeast Greenland and show that sub-surface coastal waters are decreasing in salinity with an average rate of 0.12 ± 0.05 per year. This is the first observational evidence of a significant freshening on decadal scale of the waters surrounding the ice sheet and comes from a region where ice sheet melt has been less significant. It implies that ice sheet dynamics in Northeast Greenland could be of key importance as freshwater is retained in southward flowing coastal currents thus reducing density of water masses influencing major deep water formation areas in the Subarctic Atlantic Ocean. Ultimately, the observed freshening could have implications for the Atlantic meridional overturning circulation

    Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications

    Get PDF
    AbstractUnderwater light regime is controlled by distribution and optical properties of colored dissolved organic matter (CDOM) and particulate matter. The Fram Strait is a region where two contrasting water masses are found. Polar water in the East Greenland Current (EGC) and Atlantic water in the West Spitsbergen Current (WSC) differ with regards to temperature, salinity and optical properties. We present data on absorption properties of CDOM and particles across the Fram Strait (along 79° N), comparing Polar and Atlantic surface waters in September 2009 and 2010. CDOM absorption of Polar water in the EGC was significantly higher (more than 3-fold) compared to Atlantic water in the WSC, with values of absorption coefficient, aCDOM(350), m−1 of 0.565±0.100 (in 2009) and 0.458±0.117 (in 2010), and 0.138±0.036 (in 2009) and 0.153±0.039 (in 2010), respectively. An opposite pattern was observed for particle absorption with higher absorption found in the eastern part of the Fram Strait. Average values of particle absorption (aP(440), m−1) were 0.016±0.013 (in 2009) and 0.014±0.011 (in 2010), and 0.047±0.012 (in 2009) and 0.016±0.014 (in 2010), respectively for Polar and Atlantic water. Thus absorption of light in eastern part of the Fram Strait is dominated by particles — predominantly phytoplankton, and the absorption of light in the western part of the strait is dominated by CDOM, with predominantly terrigenous origin. As a result the balance between the importance of CDOM and particulates to the total absorption budget in the upper 0–10m shifts across Fram Strait. Under water spectral irradiance profiles were generated using ECOLIGHT 5.4.1 and the results indicate that the shift in composition between dissolved and particulate material does not influence substantially the penetration of photosynthetic active radiation (PAR, 400–700nm), but does result in notable differences in ultraviolet (UV) light penetration, with higher attenuation in the EGC. Future changes in the Arctic Ocean system will likely affect EGC through diminishing sea-ice cover and potentially increasing CDOM export due to increase in river runoff into the Arctic Ocean. Role of attenuation of light by CDOM in determining underwater light regime will become more important, with a potential for future increase in marine productivity in the area of EGC due to elevated PAR and lowered UV light exposures

    Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean

    Get PDF
    AbstractThe White Sea is a semi-enclosed Arctic marginal sea receiving a significant loading of freshwater (225–231km3yr−1 equaling an annual runoff yield of 2.5m) and dissolved organic matter (DOM) from river run-off. We report discharge weighed values of stable oxygen isotope ratios (δ18O) of −14.0‰ in Northern Dvina river for the period 10 May–12 October 2012. We found a significant linear relationship between salinity (S) and δ18O (δ18O=−17.66±0.58+0.52±0.02×S; R2=0.96, N=162), which indicates a dominant contribution of river water to the freshwater budget and little influence of sea ice formation or melt. No apparent brine additions from sea-ice formation is evident in the White Sea deep waters as seen from a joint analysis of temperature (T), S, δ18O and aCDOM(350) data, confirming previous suggestions about strong tidal induced vertical mixing in winter being the likely source of the deep waters. We investigated properties and distribution of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in the White Sea basin and coastal areas in summer. We found contrasting DOM properties in the inflowing Barents Sea waters and White Sea waters influenced by terrestrial runoff. Values of absorption by CDOM at 350nm (aCDOM(350)) and DOC (exceeding 10m−1 and 550µmoll−1, respectively) in surface waters of the White Sea basin are higher compared to other river-influenced coastal Arctic domains. Linear relationship between S and CDOM absorption, and S and DOC (DOC=959.21±52.99–25.80±1.79×S; R2=0.85; N=154) concentrations suggests conservative mixing of DOM in the White Sea. The strongest linear correlation between CDOM absorption and DOC was found in the ultraviolet (DOC=56.31±2.76+9.13±0.15×aCDOM(254); R2=0.99; N=155), which provides an easy and robust tool to trace DOC using CDOM absorption measurements as well as remote sensing algorithms. Deviations from this linear relationship in surface waters likely indicate contribution from different rivers along the coast of the White Sea. Characteristics of CDOM further indicate that there is limited removal or change in the DOM pool before it exits to the Barents Sea

    Assessment of drinking water quality at the tap using fluorescence spectroscopy

    Get PDF
    Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the system, but how much natural variation to expect in a stable distribution system is unknown. In this study, relationships between DOM optical properties, microbial indicator organisms and trace elements were investigated for households connected to a biologically-stable drinking water distribution system. Across the network, humic-like fluorescence intensities showed limited variation (RSD = 3.5-4.4%), with half of measured variation explained by interactions with copper. After accounting for quenching by copper, fluorescence provided a very stable background signal (RSD

    Identifying Drivers of Seasonality in Lena River Biogeochemistry and Dissolved Organic Matter Fluxes

    Get PDF
    Warming air temperatures, shifting hydrological regimes and accelerating permafrost thaw in the catchments of the Arctic rivers is affecting their biogeochemistry. Arctic river monitoring is necessary to observe changes in the mobilization of dissolved organic matter (DOM) from permafrost. The Lena River is the second largest Arctic river and 71% of its catchment is continuous permafrost. Biogeochemical parameters, including temperature, electrical conductivity (EC), stable water isotopes, dissolved organic carbon (DOC) and absorption by colored dissolved organic matter (aCDOM) have been measured as part of a new high-frequency sampling program in the central Lena River Delta. The results show strong seasonal variations of all biogeochemical parameters that generally follow seasonal patterns of the hydrograph. Optical indices of DOM indicate a trend of decreasing aromaticity and molecular weight from spring to winter. High-frequency sampling improved our estimated annual fluvial flux of annual dissolved organic carbon flux (6.79 Tg C). EC and stable isotope data were used to distinguish three different source water types which explain most of the seasonal variation in the biogeochemistry of the Lena River. These water types match signatures of (1) melt water, (2) rain water, and (3) subsurface water. Melt water and rain water accounted for 84% of the discharge flux and 86% of the DOC flux. The optical properties of melt water DOM were characteristic of fresh organic matter. In contrast, the optical properties of DOM in subsurface water revealed lower aromaticity and lower molecular weights, which indicate a shift toward an older organic matter source mobilized from deeper soil horizons or permafrost deposits. The first year of this new sampling program sets a new baseline for flux calculations of dissolved matter and has enabled the identification and characterization of water types that drive the seasonality of the Lena River water properties

    <研究>貨幣現象的景氣循環理論に對するピグウの論争とその批判

    Get PDF
    An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration
    corecore