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Underwater light regime is controlled by distribution and optical properties of colored dissolved organic matter
(CDOM) and particulate matter. The Fram Strait is a region where two contrastingwatermasses are found. Polar
water in the East Greenland Current (EGC) and Atlantic water in theWest Spitsbergen Current (WSC) differ with
regards to temperature, salinity and optical properties. We present data on absorption properties of CDOM and
particles across the Fram Strait (along 79° N), comparing Polar and Atlantic surface waters in September 2009
and 2010. CDOM absorption of Polar water in the EGC was significantly higher (more than 3-fold) compared
to Atlantic water in the WSC, with values of absorption coefficient, aCDOM(350), m−1 of 0.565 ± 0.100
(in 2009) and 0.458 ± 0.117 (in 2010), and 0.138 ± 0.036 (in 2009) and 0.153 ± 0.039 (in 2010), respectively.
An opposite pattern was observed for particle absorption with higher absorption found in the eastern part of the
Fram Strait. Average values of particle absorption (aP(440), m

−1) were 0.016 ± 0.013 (in 2009) and 0.014 ±
0.011 (in 2010), and 0.047 ± 0.012 (in 2009) and 0.016 ± 0.014 (in 2010), respectively for
Polar and Atlantic water. Thus absorption of light in eastern part of the Fram Strait is dominated by
particles — predominantly phytoplankton, and the absorption of light in the western part of the strait
is dominated by CDOM, with predominantly terrigenous origin. As a result the balance between the importance
of CDOM and particulates to the total absorption budget in the upper 0–10 m shifts across Fram Strait. Under
water spectral irradiance profiles were generated using ECOLIGHT 5.4.1 and the results indicate that the shift
in composition between dissolved and particulate material does not influence substantially the penetration of
photosynthetic active radiation (PAR, 400–700 nm), but does result in notable differences in ultraviolet (UV)
light penetration, with higher attenuation in the EGC. Future changes in the Arctic Ocean systemwill likely affect
EGC through diminishing sea-ice cover and potentially increasing CDOM export due to increase in river runoff
into the Arctic Ocean. Role of attenuation of light by CDOM in determining underwater light regimewill become
more important,with a potential for future increase inmarine productivity in the area of EGCdue to elevated PAR
and lowered UV light exposures.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

TheArctic has undergone significant changes over the past decades as-
sociated primarilywith a decrease in sea-ice extent, thickness and volume
(AMAP, 2011; Meier et al., 2014), rising oceanic temperatures (Pavlov
et al., 2013; Polyakov et al., 2005, 2011), and subsequent changes in bio-
geochemical cycling and marine ecosystem functioning (Falk-Petersen

et al., 2000; Post et al., 2013, Wassmann et al., 2011). The quantity and
quality of solar light reaching the surface of the Arctic Ocean (sea-ice or
ocean), reflected and transmitted into the upper ocean are directly or in-
directly linked to these transformations in the Arctic system. The most
known Pan-Arctic examples would be the ice-albedo feedback mecha-
nism (Serreze and Barry, 2011), accelerating sea-ice melt, and the fact
that light limits marine primary production in the Arctic Ocean (Arrigo
et al., 2008; Popova et al., 2012; Vancoppenolle et al., 2013).

In this context, knowledge of the optical properties of Arctic surface
waters is key to understanding the current and future fate of the solar
radiation in the surface layer of the Arctic Ocean. The observed and
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projected decrease in summer sea-ice thickness and extent (Stocker
et al., 2013) is exposing a larger area to direct solar light and allowing
more energy to be transmitted through younger and thinner first-year
ice (Hudson et al., 2013; Nicolaus et al., 2012). Several studies have
already reported on enhanced solar heat trapping by organic matter
absorption within upper layer (Granskog et al., 2007; Hill, 2008;
Pegau, 2002) and sub-surface layer, leading to formationof thenear sur-
face temperaturemaximum, NSTM (Jackson et al., 2010), with potential
contributions to enhanced stratification in the surface waters and en-
hanced bottom sea-ice melt (Perovich et al., 2014; Wang et al., 2014).
From a biological perspective, elevated underwater light levels have
been shown to result in increased Arctic Ocean primary productivity
(Arrigo et al., 2008; Popova et al., 2012).

Light absorption in seawater is defined by the contribution of pure
water itself, and inorganic and organic material, which is present in
both dissolved and particulate forms. So-called colored dissolved organ-
ic matter or CDOM is an optically active fraction of dissolved organic
matter (DOM). Particulate organic matter consists of living organisms
anddetritus. All these substances have characteristic absorption proper-
ties in the visible range of solar spectrum (e.g. Mobley, 1994), and thus
defining spectral quality and quantity of underwater light. Despite their
importance, the optical properties of Arctic surface waters have not
been thoroughly investigated in the past owing to inaccessibility and
prevalence of sea-ice in the Arctic Ocean. Recently, however, observa-
tions across the Arctic Ocean proper and over the continental shelf
seas have become available (Falk-Petersen et al., 2000; Granskog,
2012; Granskog et al., 2007, 2012; Hill, 2008; Matsuoka et al., 2007,
2011, 2014; Pegau, 2002; Stedmon et al., 2011). These observations
revealed some counterintuitive peculiarities in the absorption budget
of the surface layer in the Arctic Ocean. Initial concepts about surface
layer in the Arctic Ocean being transparent waters (Smith, 1973),
were shifted towards a modern perception of the Arctic Ocean surface
waters being optically more complex with a dominant absorption by
CDOM of terrestrial origin (e.g. Granskog et al., 2007; Hill, 2008;
Matsuoka et al., 2007; Pegau, 2002). Modeling studies suggest a likely
future increase in Arctic Ocean primary productivity (Vancoppenolle
et al., 2013), which could potentially alter optical properties and light
availability in the upper layer. Thus, a comprehensive description of op-
tical properties of both CDOM and particles, their distribution and con-
tribution to light attenuation are essential for further advances in light
budget in the Arctic Ocean, and its potential Arctic-wide implications.

In a recent study, Hancke et al. (2014) described the optical proper-
ties of CDOMacross the Polar Front in the Barents Sea and found surpris-
ingly little variability in its contribution to light penetration, showing
apparently no contrast in optical properties between Arctic and Atlantic
waters, further the material was considered to be of autochthonous
(marine) origin. Opposite to the Barents Sea, Fram Strait is a region
where amajor outflowof Polar surfacewaterswith high levels of terres-
trial organic matter takes place (Amon, 2003; Granskog et al., 2012).
With the projected increase in riverine discharge and associated input
of the dissolved organic matter into the Arctic Ocean (Stocker et al.,
2013), waters in the Fram Strait are expected to undergo a notable
shiftwith regards to underwater light regime. In this study,we highlight
the contrasting optical properties of waters of the Polar and Atlantic
origin across the northern part of the Fram Strait and discuss potential
implications for ecological studies.

2. Data and methods

2.1. Sampling area

Samples were collected during the cruises “Fram Strait 2009” and
“Fram Strait 2010,” hereafter FS2009 and FS2010, respectively, of the
Norwegian Polar Institute (NPI, Tromsø, Norway) onboard R/V Lance.
Sampling was carried out during: 1st to 26th of September 2009 and
3rd to 18th of September 2010 (Dodd et al., 2012; Granskog et al.,

2012) along a section across Fram Strait at 79° N (Fig. 1). Observations
were made on 24 oceanographic stations each year, resulting in 48 sta-
tions in total.

The section spans from Kongsfjorden and the adjacent continental
shelf across thewarmand salineWest Spitsbergen Current (WSC) prop-
agating northward on the eastern flank and the relatively fresh and cold
East Greenland Current (EGC) carrying Polar waters and sea-ice from
the Arctic Ocean southwards.

2.2. Sampling and CTD observations

At each station, conductivity–temperature–depth (CTD) profiles
were obtained with a calibrated Seabird SBE911plus profiler and
seawater samples were collected with SBE32 Carousel Water Sampler
equipped with 12 Niskin bottles (Dodd et al., 2012). Recently calibrated
WET Labs ECO FL optical fluorescence sensor provided uswith a data on
vertical distribution of chlorophyll fluorescence (excitation and
emission wavelengths are 470 and 695 nm, respectively) as a proxy
of chlorophyll-a concentration (Kolber and Falkowski, 1993). For
the upper 100 m layer sampling depths were 5, 10 (in 2010), 15 (in
2009), 25, 50, 75 and 100 m. Samples for salinity, CDOM absorption
and particulate absorption measurements were collected from all
depths, except for samples for particulate absorption in 2009 that
were sampled only at 5, 15, 25, and 50 m.

Salinity samples were processed on board using a Guildline 8410A
salinometer and IAPSO standard water (Dodd et al., 2012). CDOM sam-
ples were collected from Niskin bottles and were immediately syringe
filtered (Pall Acrodisc® PF; 0.8/0.2 μm pore size, with Supor® mem-
brane) into pre-combusted amber glass vials. Samples were stored in
dark at +4 °C until analysis (Granskog et al., 2012).

Seawater for particulate absorption measurements was filtered
through 25 mm Whatman GF/F filters with low vacuum. The volume
of filtered water varied from 600ml to 1500ml depending on apparent
chlorophyll concentration (color on the filter). After filtration, filters
were placed into Petri dishes and immediately frozen at −80 °C until
analysis.

2.3. Laboratory analysis: CDOM and particle absorption

Absorbance of CDOM was measured in the spectral range between
240 and 700 nm with an increment of 0.5 nm using a Shimadzu UV-
2450 spectrophotometer and 100 mm quartz cells with ultrapure
Milli-Q as a reference, following a procedure described in Stedmon
and Markager (2001). The following spectrophotometer settings were
used: slit width of 5 nm and fast scan speed. Absorbance values were
baseline corrected and then converted to an absorption coefficient
(aCDOM(λ) with m−1 as units) following Eq. (1):

aCDOM λð Þ ¼ 2:303 � A λð Þ=l ð1Þ

where A(λ) is the absorbance at a given wavelength λ and l is the path
length of a cuvette in meters (here 0.1 m).

Spectral absorption (350–800 nm) of particulate material was
assessed by means of the quantitative filter technique described by
Mitchell (1990). Absorbance of all samples was measured using a
Shimadzu spectrophotometer (UV-2450) equipped with an integrating
sphere with similar spectrophotometer settings as for CDOMmeasure-
ments: slit width of 5 nm and fast scan speed. Blank spectra of filters
(prepared in the field) with Milli-Q water were subtracted. Optical
density of all spectra was corrected for background attenuation by
subtracting the average optical density measured between 750 and
800 nm. The particulate absorption coefficients (ap(λ) with m−1 as
units) were calculated based on Eq. (2) (Staehr and Markager, 2004):

ap λð Þ ¼ 2:303 � A λð Þ � AF= V � β λð Þð Þ ð2Þ
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where A(λ) is the absorbance, V is the volume filtered (m3), AF is the ef-
fective filter area (m2) and β(λ) = 1.63 ⋅ A(λ)−0.22 is the β correction
described in Bricaud and Stramski (1990).

2.4. Computation of underwater light field with ECOLIGHT model

For radiative transfer computations we used a certified ECOLIGHT
5.1.4 model from Sequoia Scientific Inc. (Mobley and Sundman, 2008).
Pure water optical properties are taken from Pope and Fry (1997). Ver-
tical profiles of chlorophyll a were obtained from the fluorescence sen-
sor. Parameterization of phytoplankton scattering was done according
to Loisel and Morel (1998) with a backscattering ratio, bb/b = 0.014.
The model was run with a solar elevation angle of 14.3°, representative
of 79° N at noon on 15 September; two setups were used for the optical
properties of thewater column, one corresponding to typical conditions
in the WSC (6° E) and one the EGC (9° W). Incident spectral irradiance
wasmodeled in two configurations, clear sky and overcast using a built-
in RADTRAN-X subroutine of ECOLIGHT (Mobley and Sundman, 2008)
with the following atmospheric parameters: average horizontal visibil-
ity of 15 km, relative humidity of 80%, and total ozone of 263.8 DU
(derived from climatology incorporated in ECOLIGHT). All cases were
modeled without sea ice. A comprehensive description of the model is
given in a model technical documentation (Mobley and Sundman,
2008).

3. Results

3.1. Distribution of CDOM and particulate absorption in Fram Strait

The upper 100m of our 2009 and 2010 hydrographic sections across
the Fram Strait is characterized by an apparent contrast between the
waters entering and exiting the Arctic Ocean in all key characteristics:
T, S, aCDOM(440) and ap(440) (Figs. 2 and 3). Distribution of temperature
and salinity (Figs. 2b and c, and 3b and c) depicts twomain hydrograph-
ic features across the Fram Strait: warm and saline WSC on the eastern
flank and cold and relatively fresh EGC on the western flank (Swift and
Aagaard, 1981). The core of theWSC is confined to the continental slope,
while the core of the EGC is more diffused and occupies the shelf to the
East of Greenland. The main difference between 2009 and 2010 is the
extent of the WSC. The WSC in 2009 was more pronounced compared
to that in 2010, which is seen in absolute values of T and S, and in spatial

extent of the core of the WSC. These observations are consistent with
recent reports on the weakening of WSC after a temperature peak
observed in 2006 (Walczowski et al., 2012).

Particulate absorption data covers upper 50m in 2009 and the upper
100 m in 2010. The magnitude of ap(440) is comparable between years
and the pattern is relatively similar, with highest values in the eastern
part of the strait (Figs. 2d and 3d) reaching up to 0.08–0.09 m−1 in
both years. On average, ap(440) was lower in 2009 than 2010. In
2010, the highest ap(440) is found to the east of theWSC core, in partic-
ular, close to Arctic Front, which is a zone with elevated gradients in T
and S at approximately 7–9° E as well as over the West Spitsbergen
shelf occupied with the Arctic waters originating from the Barents Sea
(Saloranta and Svendsen, 2001). The transect in 2009 did not span as
far eastwards. In the EGC area (west of 2–3°W), ap(440) was in general
lower in 2009 than in 2010. In 2009, higher ap(440) values were found
at the surface, while in 2010 higher ap(440) valueswere associatedwith
an occasional maxima in the sub-surface layer within a depth range of
15–35 m, apparently connected to enhanced stratification layers.

Distribution of CDOMacross the Fram Strait shows a distinct pattern
(cf. Granskog et al., 2012), with highest aCDOM(440) associated with the
ice covered cold EGC waters and the lowest values, sometimes close to
the detection limit of the instruments, found in the core of the WSC.
Distribution of aCDOM(440) within EGC is not homogenous; highest
values were generally observed in the sub-surface layer of 30–120 m
(cf. Granskog et al., 2012), while at the surface aCDOM(440) values are
often lower. In the core of the EGC waters, aCDOM(440) reached up to
0.14 m−1.

3.2. Relation of CDOM and particulate absorption to water masses

We used a classification using temperature and salinity of Swift and
Aagaard (1981) to define water masses in the region and to look more
closely into relationships between water masses and optically active
substances. Two distinct water masses in the Fram Strait are Atlantic
water (AW) and Polar water (PW), while remaining surface waters
are various intermediate products of their mixing, and with additions
from precipitation and sea-icemelt with a relatively broad temperature
and salinity range. Note that originally (Swift and Aagaard, 1981) Arctic
surface water (ASW) is defined as a mixing product of AW and PW, in-
fluenced by precipitation and solar heating that has a T N0 °C within S
range of 34.4–34.7and T N2 °C for the S range of 34.7–34.9. In our

Fig. 1.Map of the study area depicting 2009 (blue) and 2010 (red) stations and average September ice edge position (dashed line, similar colors).WSC and EGC are shown schematically.
Bathymetry is based on ETOPO2v2 database (U.S. Department of Commerce et al., 2006). (For interpretation of the references to color in thisfigure legend, the reader is referred to theweb
version of the article.)
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study, a number of samples were found with positive temperature but
fresher than 34.4. We consider those samples also as ASW, while still
keeping original limits for ASW on Fig. 4 (light green dotted line) ac-
cording to Swift and Aagaard (1981). In Fig. 4 we present a tempera-
ture–salinity (TS) scatter plot with ap(440) and aCDOM(350) as 3rd
variables. Use of aCDOM(350) rather than aCDOM(440) in this graph is
explained by very lowCDOMabsorption in theWSC introducing consid-
erable noise into the diagram.

Highest aCDOM(350), up to 0.6–0.7 m−1, is clearly associated with
PW (cf. Granskog et al., 2012), and more precisely with waters colder
than −1 °C, and salinity range of ca. 30–33. Lowest aCDOM(350) is
found in the core of the AW as well as within ASW (Fig. 4). Lowest
ap(440) values are associatedwith core PWaswell as AW,while highest
ap(440) values are found in the ASW.

3.3. Average CDOM and particulate absorption spectra within Polar and
Atlantic waters

Average values of aCDOM(λ) and ap(λ) in different water masses
were computed for the range 350–700 nm (Fig. 5). Emphasis is made
on the optical properties of AW and PW, as these are the dominant sur-
facewatermasses in FramStrait. Therefore, all otherwatermasseswere
grouped together and are here called remainingwaters (RW),which in-
clude Arctic SurfaceWater (ASW), lower and upper Arctic Intermediate

Waters (uAIW and lAIW) (see Fig. 4). Average aCDOM(λ) and ap(λ) for
AW and PW at selected wavelengths that are either most often used
in the literature or correspond to some of the remote sensing bands
are presented in Tables 1 and 2, respectively.

CDOM absorption, aCDOM(λ), shows similar patterns for both years,
being slightly higher in 2009, especially in PW. Highest aCDOM(λ) values
were found within PW and lowest were found in AW as has already
been indicated above (Sections 3.1 and 3.2). Mean aCDOM(λ) for RW
was found to be slightly higher than for AW. Average ap(λ) is not as con-
sistent between years as aCDOM(λ). Particulate absorption, ap(λ), was
lowest in PW in both years, while ap(λ) for AW showed large difference
from 2009 to 2010. Values of ap(λ) within AW in 2009 were more than
twice as high as in 2010. In 2010, ap(λ) values within AW and PWwere
low and very similar. RWhad the highest variation in ap(λ) and resulted
in comparatively high average ap(λ) values accompanied by highest
standard deviations (not shown).

3.4. Modeling underwater light distribution

To evaluate the impact of CDOM and particles on the underwater
light field, we performed model simulations with ECOLIGHT 5.1.4
model (Mobley and Sundman, 2008).We selected characteristic profiles
of aP(λ) and aCDOM(λ) taken in 2010 in the proximity of the core of the
EGC (9° W) and theWSC (6° E). We assumed that no sea-ice is present

Fig. 2. Transect along 79° N in September 2009 (see Fig. 1): a) bathymetry profile, b) temperature (°C), c) salinity, d) ap(440) (m−1), and e) aCDOM(440) (m−1). Sea-ice cover at time of
sampling is shown by a gray dashed line on top of subplots b) and c). Sampling depths are shown by black dots on subplots d) and e). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)
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in both cases. To facilitate comparisonwith a recent study in the Barents
Sea by Hancke et al. (2014), ECOLIGHT 5.1.4 model was initialized sim-
ilarly and similar output variables are summarized in Table 3. Graphical
representation of the input data on aP(λ) and aCDOM(λ), modeled PAR
diffuse attenuation coefficients (Kd) and modeled PAR levels are
shown in Figs. 6 and 7. In contrast to Hancke et al. (2014), however,
measured vertical profiles in spectral aP(λ) and aCDOM(λ) were assimi-
lated into the model, rather than assuming homogenous distribution
of these variables in the upper layer within AW and PW.

As pointed out in Section 4.1, CDOM absorption in the EGC was
lower in the uppermost 10–15 m compared to the subsurface layer
(EGC core with PW, down from 25 to 30 m). Such vertical distribution
is reflected on Fig. 6, where in fact total absorption in the EGC is only
slightly higher than in theWSCdespite contrast in CDOMabsorption be-
tween PW and AW. This results in similar Kd values in the upper 5–6 m
in the EGC andWSC (Fig. 7), a layer where a substantial portion of light
is attenuated. According to our calculations, under clear sky conditions,
pure water and CDOM are responsible for 83% and 76% of PAR attenua-
tion in the upper 0–10 m in the EGC andWSC, respectively, with corre-
sponding Kd values of 0.18m−1 and 0.15 m−1. Corresponding euphotic
zone depths are 34.1 (EGC) and 46.1 m (WSC). Pure water and particles
contribute to 63% (EGC) and 81% (WSC) of the attenuated energy in top
10 m. Thus, at a first glance, contrasting optical properties in EGC and
WSC do not result in substantial difference in PAR attenuation in the

upper 0–10 m, 84% (EGC) and 81% (WSC) relative to the surface and
with regards to euphotic depths, 31.5 (EGC) and 37.4 (WSC) respective-
ly (Fig. 7; Table 3).

However, notable difference is observed in the UV region. Under
clear sky, due to purewater and CDOM, 99% of the UV radiation is atten-
uated in the EGC compared to 92% in the WSC. Total attenuation in the
top 10 m reaches 99% in the EGC and 93% in theWSC, with correspond-
ing Kd values of 0.48 and 0.27 m−1. As a result, 1% penetration depth in
the EGC is almost half that in the WSC area, 9.6 m and 16.7 m,
respectively.

4. Discussion

4.1. CDOM absorption in relation to water masses in Fram Strait

The distribution of CDOM shows a pattern closely linked to hydrog-
raphy with significantly higher CDOM absorption in the EGC compared
to WSC. Based on the same data set in 2009, Granskog et al. (2012)
made a similar conclusion with an investigation of CDOM properties
and its potential sources. Their study showed that EGC outflow carries
terrestrial CDOM signature from the Arctic Ocean, probably originating
from Arctic rivers. The sub-surface CDOM absorption maximum (30–
120 m) in the EGC area was linked to river and sea-ice brine enriched
water, characteristic of the Arctic mixed layer and upper halocline

Fig. 3. Transect along 79° N in September 2010 (see Fig. 1): a) bathymetry profile, b) temperature (°C), c) salinity, d) ap(440) (m−1), and e) aCDOM(440) (m−1). Sea-ice cover is shown by a
gray dashed line on top of subplots b) and c). Samplingdepths are shown by black dots on subplots d) and e). (For interpretation of the references to color in thisfigure legend, the reader is
referred to the web version of the article.)
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waters (Granskog et al., 2012) and concurs with observations of high
CDOM in the EGC and surface waters of the Eurasian Basin (Amon,
2003; Stedmon et al., 2011). Lower absorption in the upper 25–30 m
layer in the EGC may reflect the influence of sea-ice melt dilution and
photobleaching of CDOM (Granskog et al., 2007, 2012; Pegau, 2002;
Xie et al., 2014). It has been suggested that CDOM incorporated into
sea ice can be lost through brine drainage in summer (Xie et al., 2014)
as well as photobleaching (Belzile et al., 2000; Xie and Gosselin,
2005). Potential dilution of CDOM by sea-ice melt is then contrary to
previous works in the Arctic, which suggested that CDOM accumulates
in sea-ice during its formation and is subsequently released to surface
waters during sea-ice melt providing a source of CDOM to the upper
ocean layer (Scully and Miller, 2000). Another recent work in the
Canadian Arctic (Bélanger et al., 2013) demonstrated that CDOM
absorption in the upper layer affected by sea-ice melt substantially de-
pends on the distance from terrestrial sources of CDOM (such as rivers).

The presence of low CDOM layer at the surface has implications for light
penetration and is further discussed in Section 4.3.

The CDOM absorptionmeasurements in AW align with the reported
values from the Polar Front region in the Barents Sea (Hancke et al.,
2014). CDOM absorption is low and comparable between regions,
with aCDOM(350) of 0.138 ± 0.036 (in 2009) and 0.153 ± 0.039 (in
2010) compared to 0.24± 0.07 in August 2007 in the AWof the Barents
Sea (Hancke et al., 2014). Based on an empirical CDOMmodel (Stedmon
and Markager, 2001), CDOM in AW in both Fram Strait and Barents Sea
was found to be of marine origin (Granskog et al., 2012; Hancke et al.,
2014). In contrast the Polar waters in the Fram Strait have higher
CDOM absorption and have a greater contribution of terrestrial CDOM
(Granskog et al., 2012). As a result there is more than a 3-fold difference
in aCDOM(350), in Polar water in the EGC compared to Atlantic waters
and Arctic waters in the Barents Sea. This likely reflects the differing
origin of these waters with the EGC containing a contribution from

Fig. 4. TS scatter plots with a) aCDOM(350) as a 3rd variable (with colorbar) and b) ap(440) as a 3rd variable (with colorbar) based on data from 2009 and 2010.Watermass definitions are
following Swift and Aagaard (1981). Water mass abbreviations: AW — Atlantic water, PW — Polar water, ASW — Arctic Surface water, AIW — Arctic intermediate water, lAIW— lower
Arctic intermediate water. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Arctic Ocean surface and halocline waters derived from the riverine in-
fluenced shelf seas. While Barents Sea waters on both sides of the Polar
Front apparently consist of waters of Atlantic origin, due to the absence
of a terrestrial CDOMsignal (Hancke et al., 2014),which is cooled during
its transit around Svalbard and into Barents Sea. Thus, Arctic waters in
the Barents Sea are different from Polar waters in the Fram Strait with
regards to optical properties.

4.2. Particulate absorption in relation to water masses in Fram Strait

Despite importance for the ecosystem, upper ocean and sea-ice
studies spectral absorption by particles has not been published from
Fram Strait. Absorption properties by particulate matter presented in
this study (September 2009 and 2010) give some insights relevant for
both physical and biological studies. In the area of theWSC, high values
of ap(440) to the east of the Arctic Front in 2010 (Fig. 3) are associated
with the Arctic-type water over the West Spitsbergen shelf originating
from the Barents Sea (Hancke et al., 2014; Saloranta and Svendsen,
2001). This can be related to enhanced coastal upwelling and mixing,
and hence, additional nutrient supply to the euphotic zone stimulating
phytoplankton development. In 2009 elevated ap(440) is found both

to the west and east of the Arctic Front and are associated with a
sharpest gradient in temperature and salinity (Fig. 2), which is likely
to be a regionwith high biological productivity as a high latitude oceanic
front (Taylor and Ferrari, 2011). Generally, the main mechanisms
behind enhanced primary productivity in the front area could be ex-
plained by reduced vertical mixing (Smith et al., 1987; Sverdrup et al.,
1942; Taylor and Ferrari, 2011). To thewest of the Arctic Front, elevated
ap(440) can also be associated with the sea-ice edge, areas generally
known as a high productivity waters mostly owing to enhanced stratifi-
cation in the upper layer (Taylor and Ferrari, 2011).

In the EGC area (west of 2–3°W), in 2009 ap(440)was very lowwith
maximum values at the surface, while in 2010 ap(440) was higher than
in 2009 with occasional maxima in the sub-surface layer (Figs. 2 and 3).
In both years, the vertical structure of temperature and salinitywas sim-
ilar, with a pycnocline ranging between 15 and 35m. The most notable
difference between the 2 years was related to sea-ice conditions, with
heavier ice conditions in 2009. Thus, it could cause less phytoplankton
production through light limitation in the EGC area in 2009 and hence
no sub-surface peaks in ap(440) were found.

Fig. 5.A) All aCDOM(λ) spectra in 2009 and b) 2010, and c) all ap(λ) spectra in c) 2009 and d) 2010. Bold lines represent average spectra. Note that Y-axis scale is different for a), b), c), and
d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Table 1
Average CDOM absorption coefficients for PW and AW.

Polar water Atlantic water

2009 2010 2009 2010

λ (nm) Mean ± SD
(m−1)

Mean ± SD
(m−1)

Mean ± SD
(m−1)

Mean ± SD
(m−1)

320 1.033 ± 0.174 0.833 ± 0.215 0.252 ± 0.049 0.265 ± 0.049
350 0.565 ± 0.100 0.458 ± 0.117 0.138 ± 0.036 0.153 ± 0.039
355 0.512 ± 0.092 0.418 ± 0.106 0.125 ± 0.032 0.143 ± 0.038
375 0.340 ± 0.064 0.287 ± 0.072 0.091 ± 0.022 0.099 ± 0.038
400 0.212 ± 0.046 0.184 ± 0.044 0.062 ± 0.015 0.067 ± 0.032
412 0.166 ± 0.039 0.154 ± 0.036 0.053 ± 0.014 0.060 ± 0.032
440 0.092 ± 0.030 0.091 ± 0.023 0.029 ± 0.012 0.038 ± 0.027
443 0.087 ± 0.029 0.087 ± 0.022 0.028 ± 0.013 0.036 ± 0.026
490 0.031 ± 0.019 0.048 ± 0.015 0.006 ± 0.012 0.023 ± 0.022
510 0.024 ± 0.018 0.036 ± 0.012 0.005 ± 0.012 0.019 ± 0.023
555 0.009 ± 0.015 0.025 ± 0.012 0.001 ± 0.014 0.011 ± 0.019

Table 2
Average particle absorption coefficients for PW and AW.

Polar water Atlantic water

2009 2010 2009 2010

λ (nm) Mean ± SD
(m−1)

Mean ± SD
(m−1)

Mean ± SD
(m−1)

Mean ± SD
(m−1)

350 0.011 ± 0.010 0.010 ± 0.007 0.038 ± 0.012 0.011 ± 0.007
355 0.010 ± 0.009 0.009 ± 0.007 0.034 ± 0.011 0.010 ± 0.007
375 0.011 ± 0.009 0.010 ± 0.007 0.034 ± 0.010 0.011 ± 0.007
400 0.011 ± 0.009 0.011 ± 0.009 0.037 ± 0.009 0.013 ± 0.009
412 0.014 ± 0.011 0.013 ± 0.010 0.042 ± 0.011 0.015 ± 0.011
440 0.016 ± 0.013 0.014 ± 0.011 0.047 ± 0.012 0.016 ± 0.014
443 0.015 ± 0.013 0.013 ± 0.011 0.045 ± 0.011 0.016 ± 0.014
490 0.009 ± 0.008 0.007 ± 0.006 0.030 ± 0.008 0.009 ± 0.008
510 0.006 ± 0.005 0.005 ± 0.004 0.020 ± 0.006 0.005 ± 0.005
555 0.002 ± 0.002 0.002 ± 0.001 0.007 ± 0.002 0.001 ± 0.001
665 0.004 ± 0.004 0.004 ± 0.004 0.012 ± 0.004 0.004 ± 0.004
676 0.006 ± 0.005 0.005 ± 0.004 0.016 ± 0.005 0.004 ± 0.004
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Differences in ap(440) between EGC andWSCmaybe caused by con-
trasting environmental factors such as stratification, sea ice distribution,
and nutrient availability (Cherkasheva et al., 2014; Hop et al., 2006).
Most likely, the major factor is sea-ice extent and area, potentially
damping primary productivity through light attenuation in the EGC
compared to WSC. As a consequence, this results in a generally lower
ap(440) in the EGC than in the WSC. Also, particulate absorption is
more dependent on local productivity compared to CDOM, and there-
fore likely has a stronger seasonality. Highest chlorophyll-a concentra-
tions in the northern Fram Strait are typically observed during May-
July, with lower chlorophyll-a values in August (Cherkasheva et al.,
2014). In their study, satellite-derived climatology of chlorophyll-a
concentration in August for the period 1998–2009 is in agreement
with our findings of higher ap(440) in the eastern side of the FramStrait
compared to the western side. Thus, one could bear in mind that the

contribution of particulate absorption should be higher during summer
and our synoptic transects in September can show a lower estimate of
particulate absorption that can be found in the area at other times of
year.

4.3. Relevance of ap(λ) and aCDOM(λ) to underwater light distribution

Calculations made with ECOLIGHT 5.4.1 show that pure water and
CDOM are responsible for 83% and 76% of PAR attenuation in the
uppermost 0–10 m in the EGC and WSC, respectively. These values are
higher than those (73%) reported for the Barents Sea by Hancke et al.
(2014) based on average CDOM absorption found in their study. Conse-
quently, euphotic zone depths are estimated as 34.1 (EGC) and 46.1 m

Table 3
Attenuated light in a PAR region in the upper 10 m layer of the water column (compared to surface PAR levels), integrated (0–10 m) PAR diffuse attenuation coefficients (Kd), depths of
10% and 1% (euphotic zone for PAR or 1% penetration depth for UV) of irradiance levels relative to the surface under different light conditions (clear sky and overcast). Same values are
presented for the wavelength 355 nm (integrated over 350–360 nm) for clear sky conditions. PuW— is pure water constituent, PuW, CDOM— pure water and CDOM, PuW, part— pure
water and particles, total — is total attenuation by pure water, CDOM and particles. Calculations are made at noon on September 15th for the layer 0–50 m.

Fraction of light
attenuated at 10 m

Kd (0–10 m) Z10% (m) Z1% (m)

EGC WSC EGC WSC EGC WSC EGC WSC

PAR, clear sky conditions, 15 September
PuW 0.61 0.09 N50 N50
PuW, CDOM 0.83 0.76 0.18 0.15 14.6 19.0 34.1 46.1
PuW, part 0.63 0.81 0.10 0.17 34.3 15.5 N50 37.5
Total 0.84 0.81 0.18 0.17 14.0 15.5 31.5 37.4

PAR, overcast conditions, 15 September
PuW 0.60 0.08 N50 N50
PuW, CDOM 0.80 0.74 0.16 0.13 16.6 21.3 38.4 N50
PuW, part 0.62 0.78 0.09 0.15 37.6 17.7 N50 42.0
Total 0.81 0.78 0.17 0.15 15.8 17.7 35.4 41.9

355 nm (averaged over 350–360 nm), clear sky conditions, 15 September
PuW 0.28 0.03 N50 N50
PuW, CDOM 0.99 0.92 0.48 0.25 4.7 9.1 9.7 17.9
PuW, part 0.32 0.93 0.04 0.27 46.2 8.4 N50 16.8
Total 0.99 0.93 0.48 0.27 4.6 8.4 9.6 16.7

Fig. 6. Vertical profiles of absorption coefficient (λ= 440 nm) by pure water, CDOM and
particles used in ECOLIGHT 5.1.4model runs. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of the article.)

Fig. 7. Modeled vertical profiles of diffuse attenuation coefficients (Kd) in the EGC and
WSC, and corresponding vertical profiles of PAR (logarithmic scale) in the absence of
sea-ice. (For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of the article.)
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(WSC), which is lower compared to 55.5 m in the Barents Sea. Thus,
when considering pure water and CDOM only, in both EGC and WSC
light attenuation is higher than in the Barents Sea (Hancke et al.,
2014). Pure water and particles account for 63% (EGC) and 81% (WSC)
of the attenuated energy in top 10 m, which is comparable with
model runs with 1 mg Chl a m−3 in Hancke et al. (2014) with a portion
of attenuated light equal to 72%. Including all optically active compo-
nents (pure water, CDOM and particles) results in 84% (EGC) and 81%
(WSC) of attenuated energy in the upper 10 m, which is higher
compared to the Barents Sea study with average CDOM absorption
and 1 mg Chl a m−3 (80%).

Results from our modeling exercise are in line with information on
CDOM and particulate absorption discussed in Sections 4.1. and 4.2.
We found that CDOM is a primary contributor to PAR attenuation in
the EGC waters whereas particles are a major contributor to PAR atten-
uation in theWSC area. Importance of CDOM absorption to the total ab-
sorption budget in various regions of the Arctic Ocean has been
previously highlighted by Pegau (2002), Granskog et al. (2007), and
Hill (2008). However, when considering effect of both CDOM and parti-
cles, PAR attenuation in the upper 10m is only slightly higher in the EGC
than in WSC. Here, it is important to mention that Kd in the PAR region
also accounts for absorption by water itself. Given high absorption by
pure water at longer wavelengths (N550–600 nm) within the PAR
range (Pope and Fry, 1997), similarity in Kd in the uppermost 5–6 m
seen in Fig. 7 can be partially explained the contribution of pure water
absorption.

Differences between EGC and WSC are more pronounced when
looking at the ultraviolet region of the solar spectrum (355 nm). In the
EGC waters, 99% of the irradiance at 355 nm is attenuated in the
upper 10m, compared to only 93% in theWSC. Corresponding euphotic
depths are 9.6 m for EGC and 16.7 m for WSC.

While some UV light can be utilized by photosynthetic organisms, it
is known to be responsible for a large part of the photoinhibition of pho-
tosynthesis in aquatic systems (e.g. Kirk, 1994). The amount of UV solar
radiation reaching sea-ice and ocean surface largely depends on ozone
concentrations in the atmosphere (e.g., Nicolet, 1975). While there
has been recent reports on stratospheric ozone depletions in the Arctic
(Manney et al., 2011), generally, stratospheric ozone has been recover-
ing over the past decades and this trend is expected to continue in the
future (Coldewey‐Egbers et al., 2014). Hamre et al. (2008) showed
that depletion in stratospheric ozone indeed results in elevated UV in
sea-ice covered and open Polar waters; however it also results in in-
creased PAR levels compensating negative effects of UV with overall
minor effect on primary productivity, hence on optical properties influ-
enced by particulate absorption and scattering. Therefore, it is unlikely
that changes in stratospheric ozone as an external factor would play
an important role for optical properties of seawater and marine
ecosystem.

Changes in optical properties in theWSC area in the future may po-
tentially be associated with the dynamics and seasonality of phyto-
plankton, that is in turn, depends on oceanographic and sea-ice
conditions. Given the absence or low concentrations (mostly over the
West Spitsbergen Shelf) of sea-ice in the WSC area, it is difficult to ex-
pect that substantial changes might occur with respect to seawater op-
tical properties. Hydrographic conditions in this region as well as in a
central Fram Strait are known for high spatial and temporal variability
(Johannessen et al., 1987; Tverberg and Nøst, 2009), and to a large ex-
tent, changes in optical properties (mostly particulate absorption) will
be driven by this variability.

In the EGC, more drastic changes may be expected. Sea-ice is cur-
rently covering large areas in the region of EGC year-around, limiting
the euphotic depth. However, if recent sea-ice thinning trends in the
Fram Strait (Hansen et al., 2013; Renner et al., 2014) and in the Arctic
Ocean proper (e.g. Meier et al., 2014) proceed in the future, one might
expect CDOM to become more important for the absorption budget of
the upper ocean. Thinning of the sea-ice cover would result in higher

PAR availability in the surface ocean and thus potentially higher produc-
tivity, which is in line with recent findings from the Central Arctic
(Arrigo et al., 2008) as well as in the central Fram Strait (Cherkasheva
et al., 2014). However, the response of phytoplankton to increased
light levels is a complex interplay between light, temperature, nutrient
availability, stratification and light-adaptation and acclimation of the
phytoplankton themselves (e.g. Palmer et al., 2013), and thus not only
dependent on changes in light availability. When sea ice is present, as
currently is the case, euphotic depths will be obviously even shallower
in the EGC, than presented here. Further, sea-icemeltwaters will gener-
ally result in a shallow pycnocline, with the potential for subsurface chl
a maxima (SCMs), at rather shallow depths without harmful UV radia-
tion. SCMs are prevalent features in the in the Arctic Ocean and impor-
tant for integrated primary production estimates (Ardyna et al., 2013).
On the other hand Bélanger et al. (2013) reported that melting sea ice
released material that slightly reduced the amount of PAR, although
we did not observe this in the EGC. Increased primary productivity,
however, would alter optical properties of surface waters in the EGC
by increasing light attenuation by particulate matter.

5. Conclusions

There are significant differences in the spectral absorption proper-
ties of CDOM and particles between the Polar waters of the East
Greenland Current and the Atlantic waters of theWest Spitsbergen Cur-
rent. Highest CDOM absorption is associated with the core of the PW in
the EGC, while lowest CDOM absorption is found in the WSC area. In
contrast, particulate absorption is greatest in the WSC. We expect that
the contrast in particulate absorption would be even higher in spring
and summer as indicated by chlorophyll distribution in the Fram Strait
(Cherkasheva et al., 2014).

CDOMabsorption levels found in AW in the Fram Strait are similar to
those found in the Barents Sea. However, CDOMabsorption in PW in the
EGC area is consistent with previous studies in the Arctic Ocean proper
and is more than 3 times higher than CDOM absorption levels found in
Arctic waters of the Barents Sea (Hancke et al., 2014); this points
towards the fact that waters in the northern Barents Sea are likely re-
circulated Atlantic water, rather than true Polar waters, and optical
properties are dominated by phytoplankton.

Despite a contrast in optical properties between EGC and WSC, PAR
attenuation in the upper 10 m is only slightly higher in the EGC than in
WSC. UV attenuation is much stronger in EGCwaters compared toWSC.
With future sea ice cover changes expected in the Fram Strait and the
Arctic Ocean, seawater optical properties in the EGC area will become
more important in shaping the underwater light regime. In this regard,
western side of the Fram Strait might serve as a good case study region
with true Polar waters outflow to unveil consequences of sea-ice
decrease in the Arctic Ocean proper on biogeochemical and biological
processes, such as photo-oxidation of organic matter, nutrient mineral-
ization, and primary productivity of phytoplankton and sea-ice algae.
The described optical contrasts between the optically complex waters
in the EGC and algal-dominated waters in the WSC call for further ef-
forts on development of regional remote sensing ocean color algorithms
and their ground truthing. Future studies will also be needed in order
to resolve seasonal variability of optical properties, especially the contri-
bution of phytoplankton, and its implications for marine ecosystems
and the energy budget of waters in the Fram Strait.
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