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a b s t r a c t

Treated drinking water may become contaminated while travelling in the distribution system on the way
to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the
treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively
and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires
potential contamination events to be distinguished from natural fluctuations in the system, but how
much natural variation to expect in a stable distribution system is unknown. In this study, relationships
between DOM optical properties, microbial indicator organisms and trace elements were investigated for
households connected to a biologically-stable drinking water distribution system. Across the network,
humic-like fluorescence intensities showed limited variation (RSD ¼ 3.5e4.4%), with half of measured
variation explained by interactions with copper. After accounting for quenching by copper, fluorescence
provided a very stable background signal (RSD < 2.2%) against which a ~2% infiltration of soil water
would be detectable. Smaller infiltrations would be detectable in the case of contamination by sewage
with a strong tryptophan-like fluorescence signal. These findings indicate that DOM fluorescence is a
sensitive indicator of water quality changes in drinking water networks, as long as potential interferents
are taken into account.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Between leaving a treatment plant and arriving at the con-
sumer's tap, drinking water enters the distribution network where
it resides for periods that typically range from hours to days. During
this time, the drinking watermay become contaminated via a range
of processes. Microbial water quality can deteriorate in networks
due to regrowth or entrainment of untreated water through
damaged pipes, presenting potentially serious health risks to con-
sumers (WHO, 2014). In the United States during 1971e2006,
around 10% of disease outbreaks caused by unsafe drinking water
have been attributed to deficiencies in the distribution network
(Craun et al., 2010).

Microorganisms in drinking water distribution systems are
either part of the indigenous community or enter the systemwhere
the pipe network integrity is compromised. Microbes living in soil
pore-waters can be entrained through cracks in pipes and joints
during negative pressure events (LeChevallier et al., 2003). Inside
the pipes, heterotrophic bacteria utilise available organic substrate
in the water as a source of carbon, nutrients and energy. Changing
flow conditions in the network can also dislodge biofilms har-
bouring pathogenic species and create conditions that favour
opportunistic species, potentially including pathogens (Manuel
et al., 2007).

Obtaining rapid and affordable assessments of the microbial
quality of drinking water is a famously intractable problem. Mi-
crobial indicator species including Escherichia coli (E. coli), co-
liforms, Enterococcus spp. and total bacterial counts are frequently
monitored as proxies for pathogens that are expensive or imprac-
tical to measure. Although the presence of E. coli and coliforms
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indicates contamination, their absence does not preclude the
presence of other harmful organisms (Wu et al., 2011). Microbial
biomass is typically measured via heterotrophic plate counts
(HPCs), which quantifies bacteria that grow by consuming organic
nutrients, i.e. a small fraction of total microorganisms in drinking
water. The actual species quantified by HPC depends on cultivation
medium, incubation temperature and incubation time (Allen et al.,
2004). HPC levels are not regulated, although abundances above
500 cfu/mL are considered of potential concern, mainly due to
interference with the analytical detection of total coliforms. HPC
analyses typically take several days to implement assuming a well-
equipped laboratory (Allen et al., 2004), hindering a rapid response
to adverse measurements. Faster, cultivation-free methods for
assessing microbial biomass exist, including adenosine tri-
phosphate (ATP) and flow cytometry cell counts (FC), but these
methods are still relatively complex to implement and interpret,
preventing their widespread use for monitoring distribution net-
works (Hammes et al., 2008; Van der Wielen and Van der Kooij,
2010).

Dissolved organic matter (DOM) is a heterogeneous mixture of
carbon-containing molecules present in all aquatic ecosystems.
Globally, DOM plays a key role in carbon and nutrient cycling, and
as a substrate for microbial growth, is one of the main risk factors
promoting microbiological growth in distribution networks
(Camper et al., 2003). DOM optical properties (absorbance and
fluorescence) are widely used for studying changes in DOM
composition and concentration (Murphy et al., 2013). Although
neither spectroscopic technique necessarily directly measures the
small bioavailable molecules consumed by heterotrophic bacteria,
numerous studies have shown that optical measurements are
nevertheless sensitive proxies of the wider DOM pool and track
subtle changes in water quality (Stedmon et al., 2011; Stubbins
et al., 2014). DOM fluorescence is a sensitive tracer of sewage
contamination, correlating with E. coli abundances (Baker et al.,
2015) and nutrients (Baker and Inverarity, 2004) across systems.

Absorbance spectroscopy is frequently used to track the abun-
dance of the coloured fraction of dissolved organic matter (CDOM)
in drinking water treatment systems (Weishaar et al., 2003),
including in online applications (Chow et al., 2008). Fluorescence
spectroscopy is a much more sensitive technology, and additionally
tracks compositional changes in DOM (Stedmon et al., 2011).
However, studies of fluorescence in drinking water distribution
systems are very few. Hambly et al. (2010) surveyed houses
serviced by two separate distribution systems (potable and recy-
cled non-potable), and concluded that network cross-connections
would be detectable from measuring fluorescence intensities at
the tap. However it remains to be seen if organic matter

fluorescence in drinking water networks is both stable and pre-
dictable enough to offer a sound baseline to identify contamination
at point-of-use; and if the signal is correlated to microbial abun-
dances and other chemical constituents in distribution systems.

Trace metals leached from pipe materials can potentially inter-
ferewith spectroscopicmeasurements of DOM in drinkingwater. In
the presence of transition metals such as iron, copper and
aluminium, metal-DOM complexes can form which absorb more
strongly than un-complexed DOM while fluorescing less (Senesi
et al., 1991; Yan et al., 2013). Corrosion by cast iron, galvanized
iron and steel pipes are the main sources of iron in drinking water
(WHO, 2014). Copper is seldom used for municipal network pipes
but is frequently used in household plumbing and fixtures. The
suppression or quenching of DOM fluorescence by various metal
ions has been studied in natural aquatic systems (Ryan and Weber,
1982; Yamashita and Jaffe, 2008) and wastewaters (Reynolds and
Ahmad, 1995). However, it is uncertain whether metals would
interfere to any significant extent with DOM spectroscopic mea-
surements in distribution systems where concentrations of DOM
and metals are both low.

Chlorine is frequently applied at the end of drinking water
treatment to limit regrowth and other microbial risks in the dis-
tribution network. In chlorinated networks, reactions between
organic matter and chlorine break down large DOM molecules,
decreasing aromaticity and fluorescence intensities and shifting
fluorescence emission spectra (Beggs et al., 2009; Korshin et al.,
1999). The effect of chlorine exposure on fluorescence intensities
approximately follows an exponential decay curve, with rapid
losses occurring at short reaction times (minutes to hours) followed
by gradual losses at long exposures (Beggs et al., 2009). Chlorine
could therefore be a confounding factor for comparing fluorescence
measurements at the tap, particularly when chlorine doses are high
and distribution times vary greatly.

In this study, relationships between DOM optical properties,
microbial indicator organisms and trace element concentrations
were investigated in a drinking water distribution network. The
purposewas to assess whether DOMoptical propertiesmeasured at
the tap correlate with, and are potential surrogate indicators of,
abundances of microbial indicator species. The study area had no
reoccurring chemical or biological water quality issues, allowing
determination of baseline conditions in the network and thresholds
to be established for recognising significant changes in water
quality. Also, since there is much interest in using DOM optical
properties for online water quality monitoring, we investigated
whether trace elements sourced from within the pipe network
interfere with DOM optical measurements at the tap. If significant
interferences occur, this may seriously limit the interpretation of
online DOM measurements if trace elements are not monitored at
the same time.

2. Material and methods

2.1. Sampling and analytical methods

A municipal drinking water distribution network in central
eastern Swedenwas surveyed. The G€avle distribution system forms
a 486 km network of predominantly iron and plastic (polyethylene)
pipes. The plant receives groundwater, adjusts the pH with sodium
hydroxide, and chlorinates before releasing it into the distribution
system. Due to the groundwater source, the outgoing drinking
water is moderately hard (calcium and magnesium
hardness > 60 mg/L). NaClO is dosed at 0.3e0.4 mg/L producing
total chlorine in the outgoing water of 0.1e0.15 mg/L. Residual
chlorine at the plant reacts rapidly with the NOM in the water to

Acronyms and abbreviations

DOM Dissolved organic matter
CDOM Coloured dissolved organic matter
NOM Natural organic matter
DOC Dissolved organic matter
RSD Relative standard deviation
TT Trigger threshold
HPC Heterotrophic plate count
LoD Limit of detection
EEMs Excitation-emission matrices
PLS Partial least squares
O-PLS Orthogonal partial least squares
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produce total chlorine concentrations (total chlorine ¼ residual
chlorine þ chlorine demand) usually around 0.01e0.06 mg L�1 in
the taps of buildings along the network. Thus the levels of free
residual chlorine (FRC) in the network are much lower than is
typical (>0.2 mg/L) to ensure a disinfection effect at the point of use
(WHO, 2014).

Drinking water samples were collected in winter (December
1e2, 2015) at 87 locations in houses and public buildings connected
to the distribution system. Sampling locations were selected so as
to encompass the entire range of water residence times experi-
enced by households on the network (0.5e50 h). Water samples
were obtained from taps in the kitchen or bathroom, after first
flushing for 5 min. Replicate samples (n ¼ 2) were collected at a
subset of sites (n ¼ 10) to assess experimental and analytical
reproducibility; these were both collected and measured
completely independently of one another. Samples for microbial
analyses and turbidity measurement were collected in sterile
plastic (HDPE) bottles, DOM (dissolved organic carbon (DOC),
absorbance, and fluorescence) samples in ashed amber glass bottles
(DOM), and trace metal samples in acid-washed polyethylene
tubes. DOM and metals samples were filtered on-site through pre-
flushed, 0.45 mm cellulose acetate filters; lab tests indicated no
measurable fluorescence after flushing with 120 mL of Milli-Q.
Absorbance and fluorescence samples were analysed at in the lab
within 48 h of sampling. Trace metal samples were acidified to 1%
v/v with high purity HNO3 and analysed within 15 days. DOC
samples were acidified to pH ¼ 2 with high-purity HCl, stored at
4 �C, and analysed within two months. Microbial samples and
turbidity were analysed the following day at a commercial
analytical laboratory (Eurofins).

In the laboratory, CDOM fluorescence and absorbance were
measured in a 1-cm quartz cuvette using an Aqualog spectrofluo-
rometer (Horiba Scientific). Excitation-emission matrices (EEMs)
were obtained with 3 s integration time for excitation wavelengths
220e600 nm at 3-nm intervals and emission wavelengths of
240e800 nm at 2.3-nm intervals. Blank EEMs were acquired daily
from ultra-pure water sealed in a quartz fluorometer cell and from
MilliQ water. EEMs were spectrally corrected for instrumental
biases and concentration effects according to established methods
(Murphy et al., 2010). DOC was measured using a Shimadzu TOC-
VCPH carbon analyser, using the non-purgeable organic carbon
(NPOC) method (EN 1484, 1997).

Concentrations of ten metals (Al, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb
and Zn) were determined by inductively coupled plasma mass
spectrometry (ICP-MS) using a Thermo Scientific iCAP Q spec-
trometer. The instrument was operated in standard mode for all
elements, except for Fe and Ni which were analysed in kinetic en-
ergy discrimination (KED) mode with He as collision gas.

Microbial analyses were performed according to standard
methods. Culturable heterotrophic bacteria counts were deter-
mined using the ISO HPC method 6222-M (ISO 6222, 1999) which
involves incubation at 22 �C for three or seven days. E. Coli and
coliforms were enumerated by the IDEXX-Colilert method and
Enterococcus spp. by the IDEXX-Enterolert method. Turbidity was
measured using the SS-EN ISO 7027method. In historical surveys of
the distribution system (unpublished data), culturable microor-
ganisms and slow-growing bacteria abundances were generally
below 10 and 100 cfu/mL, respectively.

Chlorinewas not measured during this survey; however, routine
monitoring data are collected approximately monthly and indicate
very low residual chlorine in the network. In samples collected
immediately before and after this survey (n ¼ 13), total chlorine
was 0.03 mg/L (median) with a maximum of 0.04 mg/L at moni-
toring sites with distribution times of 8e41 h; these numbers thus
represent upper limits for chlorine residuals at themonitoring sites.

These low values are consistent with long-term datasets archived
with the Swedish Geological Survey (Vattent€aktsarkivet, 2016): in
2012e2015 total chlorine was typically below 0.05 mg/L (90th
percentile ¼ 0.08 mg/L, n ¼ 400) at monitoring stations along this
network. In this study, we use the chlorine reaction time as a proxy
for chlorine residuals (Korshin et al., 2002). For all samples in this
study, the chlorine reaction time exceeded 57 h (2.4 days); there-
fore, it is expected that the Cl residuals at the time of fluorescence
analysis were well below the upper limits indicated by the routine
monitoring datasets.

To simulate the contamination of drinking water pipes by soil,
and determine detection thresholds for observing the contamina-
tion, a serial dilutionwas performed of soil water added to drinking
water. Soil was obtained from an urban area at a depth of
approximate 1 m and its organic carbon content estimated by loss
of ignition. The stock solution (2 g soil in 1 L of tap water) was
mixed on a magnetic stirrer for 24 h then filtered through cellulose
acetate (0.45 mm). The dilution series was prepared by diluting the
stock solution using Milli-Q for 13 dilution factors between 1 and 1/
200. Fluorescence and absorbance were measured the same day
and DOC within three days.

2.2. Statistical methods

2.2.1. Relative standard deviation and detection limits
Independently measured replicate samples were used to assess

experimental and analytical error. Relative standard deviations
(RSD ¼ standard deviation/mean) are independent of scale and
were used to compare how precisely different variables could be
measured. Analytical detection limits were calculated as three
times the standard deviation of triplicate blanks. Trigger thresholds
(TT) were also determined, defined as the threshold for recognising
a significantly elevated level of a tracer, for example due to its
entrainment in the network via a cracked pipe (Equation (1)).

TT ¼ xþ 3s (1)

In Equation (1), x and s are the average and standard deviation of
measurements from samples collected across the whole network.

2.2.2. PARAFAC model
The fluorescence measurements generated a three dimensional

dataset of EEMs (n ¼ 87, after averaging data from experimental
replicates). Within each EEM, the measured trilinear data can be
modelled as the sum of a limited number of independently-varying
fluorescence signals (Bro, 1997). These independent signals can be
quantified using the PARAFAC algorithm, which identifies the best-
fitting excitation and emission spectra for each independent signal
(termed a ‘component’) and its relative concentration in each
sample. PARAFAC modelling was implemented on the corrected
dataset using the N-Way and drEEM toolboxes for MATLAB ac-
cording to established methods (Andersson and Bro, 2000; Murphy
et al., 2013). Modelling was performed with non-negativity con-
straints applied on all modes.

PARAFAC models were investigated with two to seven compo-
nents, and split-half analysis, jack-knifing, and residual analysis
used to select the most appropriate model. This process identified
four independently-varying signals producing a four-component
PARAFAC model and their intensities (F1-F4) in each sample
(Murphy et al., 2013).

2.2.3. PLS model
Multivariate calibration is often used for process control when it

is necessary to predict variables (Y) that are expensive or time-
consuming to measure from a set of correlated variables (a
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matrix of X variables) that are measured more easily. In the context
of drinking water monitoring, it would be desirable to predict mi-
crobial abundances from one or more easily-obtained chemical
measurements. Partial least square (PLS) regression is often used
for multivariate calibration since it performs well even when the
number of predictor variables is high and some variables correlate
with each other. When the PLS model is orthogonalised (O-PLS), all
variation correlated to the response variable is compressed in the
first latent variable, which greatly simplifies interpretation (Trygg
and Wold, 2002). In this study, slow-growing bacteria was the
only microbial indicator detected at abundances that were high
enough to be included in statistical analyses; all other microbial
indicator species had high frequencies of non-detection. O-PLS was
therefore used to predict slow-growing bacteria (Y) from twelve
water quality variables (X, containing F1, F2, F3, F4, Al, Cu, Pb, Zn, Mn,
Fe, DOC, absorbance at 254 nm (A254)). O-PLS regression was
implemented using the PLS_Toolbox for MATLAB (ver. 8.1, Eigen-
vector Inc.). Before applying PLS, all predictor variables were
transformed using the Cox-Box power transformation to improve
adherences to a normal distribution; thereafter, each variable was
autoscaled. Replicate measurements were averaged prior to
modelling.

An iterative process was used to develop the PLSmodel. Initially,
a model was created using all of the chemical data available with
the aim to predict slow-growing bacteria abundances across all
sites (n ¼ 87). Subsequently, this model was refined by removing
the variables that had least influence on the model (lowest VIP).
Still, this model had low predictive power and was not robust
during cross-validation. It was then attempted to develop a model
only for sites in the southeast parts of the distribution system
(n ¼ 37) since these had generally higher bacterial counts and
fewer non-detects. This also produced no robust patterns. Finally, a
tentative model was developed for the southeast distribution sys-
tem (n ¼ 31 after excluding five sites with low microbial abun-
dances (<25% percentile, <7 cfu/mL)) and one site with high
leverage on the model, and retaining only four parameters as pre-
dictor variables (F4, Fe, A254, Pb).

2.2.3.1. Metal complexation model. There are no establishedmodels
for estimating metal-DOM complexation parameters from absor-
bance data. Two widely-used models for estimating the binding
parameters of metal-ligand complexation from fluorescence data
are the Ryan-Weber model (Ryan and Weber, 1982) and modified
Stern-Volmer model (Hays et al., 2004). Both assume 1:1 metal to
ligand complex formation. The Ryan-Webermodel assumes a linear
relationship between the formed complex and fluorescence
quenching, whichmay not reflect the full complexity of the binding
mechanism (Hays et al., 2004). In the modified Stern-Volmer
model, a nonlinear relationship is assumed, parameterized by a
quenching constant (KM) and an initial fraction (f) of fluorescence
contributing to quenching. This Stern-Volmer model was used to
estimate the binding parameters between PARAFAC components
and copper in this study (Equation (2)).

F0
F0 � F

¼ 1
f$KM$CM

þ 1
f

(2)

In Equation (2), F and F0 are fluorescence intensities corre-
sponding to the measured total copper concentration CM in sam-
ples containing copper, or in the absence of copper, respectively. KM

and f are the conditional stability constant and the fraction of initial
fluorescence affected by metal binding. The KM and f values were
determined in this study from the relative fluorescence intensity of
each component (Equation (2)) plotted against the inverse con-
centration of copper.

2.2.3.2. Effect of chlorine. Chlorine residuals decrease as a function
of reaction time, and while rapid changes occur at short reaction
times, at longer exposure times (e.g. a day or more), the rate of
change can be assumed to be linear (Korshin et al., 2002). We
defined the chlorine reaction time for a given sample as the time
delay between chlorination at the plant and fluorescence analysis
in the laboratory, which is assumed equal to the sum of its distri-
bution time and the delay between sampling and analysis. To
investigate whether chlorine exposure could have been a con-
founding factor in fluorescence measurements, general linear
models were used to model fluorescence as a function of chlorine
reaction time, both in the presence and the absence of a potential
interaction with copper.

3. Results

3.1. Microbial and chemical water quality

3.1.1. Microbial indicators
Abundances of microbial indicator species were low or below

detection limits across the entire distribution network. Abundances
of E. coli, coliforms and Enterococcus spp. were below detection
limits (<1 per 100 mL) at all sites. Slow-growing bacteria abun-
dances varied between 0 and 110 cfu/mL, and culturable microor-
ganisms between 0 and 30 cfu/mL. Due to fewer non-detects, slow-
growing bacteria was used as the primary indicator of microbial
abundance in all statistical analyses. Among paired replicate sam-
ples, the RSD of slow-growing bacteria abundance averaged 31%
(Table 1).

3.1.2. Trace metals
All trace metals were detected at concentrations well below the

health limits recommended by the World Health Organization
(WHO, 2011) (Table 1). No health limits exist for Fe, Al and Zn due to
the very low concentrations of these metals in drinking water
relative to levels that produce toxicological effects. Coefficients of
variation for each metal are presented in Table 1. Variation among
replicate measurements of Al, Pb, Cd and Cr was high (RSD > 50%),
and concentrations were near the analytical detection limits. For all
other trace metals, RSD was below 17%.

3.1.3. Turbidity, DOM and DOC
Turbidity was low across the entire distribution network

(0e0.27 FNU; average 0.14 FNU), and below detection (<0.1 FNU) at
almost one third of sites. Spectroscopic measurements (absorbance
and fluorescence) indicated low variability in the concentration and
composition of optically-active DOM (Fig. 1). Across the network,
absorbance varied most at short excitation wavelengths (Fig. 1a)
and fluorescence at short excitation and emission wavelengths
where protein-like fluorescence is observed (Fig. 1b). Overall,
absorbance was more variable than fluorescence (RSD ¼ 10% for
A254, compared to 4% for humic-like peaks).

A four-component PARAFAC model explained 99.9% of the total
variance in the fluorescence EEM dataset (Fig. 2). Based on pub-
lished interpretations of components with similar spectral prop-
erties (Coble, 1996), the first three components (F1: 314/408 nm F2:
359/443 nm and F3: 389/508) represent humic-like DOM and
component 4 (F4: 290/351) represents tryptophan-like DOM. Each
fluorescence component was present at intensities exceeding the
method detection limits in every sample.

Variation in fluorescence intensities could not be explained by
differences in chlorine reaction time. In general linear models of
fluorescence intensities regressed against chorine exposure time
and/or copper, chlorine exposure time explained no more than 5%
of total variability in any fluorescence component (R2 � 0.05). In
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contrast, copper explained 56e63% of total variability for the
humic-like components (F1 - F3) but less than 1% of the variability
in the protein-like component (Supporting Information, Tables S1-
S4).

DOC concentrations varied from 2.5 to 8.8 mg/L across the dis-
tribution network, with mean and median concentrations of
4.5 ppm and 3.5 ppm, respectively (Fig. 3a). Two distinct DOC
distributions could be observed; one with low DOC similar to DOC
in the outgoing water from the plant (<4 mg/L) and a second which
was normally distributed with mean of approximately 7 mg/L. No
geographical pattern could be detected that explained these two
distributions. At the same time, the result could not be explained by
contamination or by analytical error as samples were analysed in
random order, and replicate samples spanned both distributions
and differed by at most 16% (see the Supporting Information).
Instead, this result indicates that an additional source of DOC was
present either in the distribution network or else in the household
pipe network, potentially including plastic piping and rubber seals
in tap fittings.

3.2. Effect of water residence time on water quality

No correlation was observed between water residence time and
any of the individual chemical or microbial parameters measured in
the distribution system (Fig. 3). Also, no variation in chemical or
microbial parameters could be attributed to the time of day when
sampling took place. However, qualitative trends were observed for
some parameters. When sites were divided in three groups having
low (<25th percentile, <7 cfu/mL), medium (25th�75th percentile,
7e40 cfu/mL) or high (>75th percentile, � 40 cfu/mL) slow-
growing bacteria abundance, sites with high slow-growing bacte-
ria were often located in the southeast region of the distribution
network (Fig. 4a). Also, when divided in groups representing low
(<17 h), medium (17e29 h), or high (�29 h) water residence times,
sites with long residence times mainly clustered in the same region
(Fig. 4b). In this southeast region, the average travel time was
almost 10 h longer than at other locations and the average slow-
growing bacteria abundance was almost 1.7 times greater than
the average for the remaining sites.

Table 1
Water quality parameters in the drinking water distribution network. � ¼ no data, e ¼ no limit.

Parameter Min a Max a Median a RSD across sites a (%) RSD between
replicates (%)

Outgoing b LoD c Heath limit d

Median Max

Fe (mg/L) 1 20 4 75 7 17 <20 0.74 e

Al (mg/L) 0.50 8 2 47 14 79 <10 1.72 e

Cu (mg/L) 10 500 50 87 3 14 <20 0.07 2000
Pb (mg/L) <0.01 0.50 0.07 100 34 110 � 0.01 10
Zn (mg/L) 2 100 5 170 1 11 � 0.04 e

Mn (mg/L) 0.05 2 0.40 100 7 10 <10 0.05 400
Ni (mg/L) 0.25 1.75 1.70 14 2 5 � 0.01 70
Cd (mg/L) 0.02 0.17 0.05 47 15 71 � 0.01 3
Cr (mg/L) 0.08 1 0.24 54 15 75 � 0.04 50
Mg (mg/L) 5.4 6.8 6.0 5 2 3 4 0.0005 e

F 1 (RU) 0.34 0.42 0.40 4 1 1.9 � 3 e-4 e

F 2 (RU) 0.25 0.31 0.29 4 1 1.4 � <1 e-6 e

F 3 (RU) 0.19 0.23 0.22 4 0.7 1.1 � 4 e-4 e

F 4 (RU) 0.13 0.23 0.14 11 4 14 � 1 e-6 e

DOC (mg/L) 2.5 8.9 3.5 41 8 13 2.5 0.16 e

A 254 (cm �1) 0.04 0.08 0.05 10 2 19 � 0.001 e

Cl (mg/L) � � 0.03 � � � 0.1
Slow- growing bacteria ðcfu=mLÞ <1 110 17 100 25 94 � 1 e

a Data are from samples collected in houses along the network.
b Data reported by the WTP in the finished water leaving the plant.
c Analytical limits of detection (LoD) were determined from procedural blanks.
d Health limits are from WHO guidelines (WHO, 2011).

Fig. 1. Variation in optical properties across the distribution network. (a) Absorbance spectra (grey lines) compared to the average spectrum (black line); (b) Average fluorescence;
(c) standard deviation of fluorescence; observe the change in scale.
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3.3. Predicting microbial abundance from chemical variables

Four chemical variables (protein-like fluorescence F4, A254, Fe
and Pb) were most useful for predicting slow-growing bacteria
abundances in the southeast network where distribution times
were longest. The PLS model of the southeast network explained
33% of the measured variation in slow-growing bacteria abun-
dances and 61% of the measured variation in these four chemical

parameters (RMSECV ¼ 2.7, RMSEC ¼ 2.1, n ¼ 31). Only tentative
conclusions can be drawn from the model due to its restricted
geographical range and relatively low predictive ability
(R2

cv ¼ 35%). Along the only axis relevant to predicting microbial
abundance, A254 and protein-like fluorescence were negatively
correlated to slow-growing bacteria. This could occur if these
autotrophic bacteria exerted top-down control on the abundance of
protein-like fluorophores, or if protein-like fluorescence and bac-
terial abundance were both influenced by a third parameter but in
opposite directions. Bacteria abundances were positively correlated
with Fe, which is a potential food source for some types of auto-
trophic bacteria (Kirchman et al., 2000) but was not a significant
ingredient in the HPC growth medium.

3.4. Copper and fluorescence/absorbance interaction

Copper concentrations were negatively correlated with each of
the three humic-like fluorescence components, with Pearson cor-
relation coefficients of 77e78% (Fig. 5a, Table S5). At the same time,
a positive correlation was observed between absorbance and cop-
per concentrations (Fig. 5b). Copper did not correlate with protein-
like fluorescence. For each humic-like component, the modified
Stern-Volmer model provided a reasonable fit to the fluorescence
data, with copper explaining 37e49% of the measured variation in
fluorescence intensities. This fit is illustrated for component F2 in
Fig. 5. A better fit to the dataset was obtained using a linear model
(R2 ¼ 56e62%) or a power-regression model (R2 ¼ 62e63%).
Assuming the Stern-Volmer model, the log Km values for the three
humic-like components in this study are comparable with values
reported in earlier studies (Table 2).

The strong correlations between copper and fluorescence
enabled the fluorescence data to be corrected for copper quenching
by calculating what fluorescence intensities would have been in the
absence of copper (i.e. at the intercept [Cu] ¼ 0). Fluorescence in-
tensities across the network were significantly less variable after
copper correction, as illustrated by reduced coefficients of

Fig. 2. Spectral properties (dotted line: excitation, solid line: emission) of four
independently-varying fluorescent components (F1 - F4) identified in the drinking
water network. Inserts show excitation wavelengths on horizontal axis and emission
wavelengths on vertical axis.

Fig. 3. The distribution of DOC, slow-growing bacteria, total fluorescence (Em > 400 nm) and A254 versus water residence time. Replicated samples are shown as filled circles.
Histograms of the data are shown to the right of each plot.
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variation. Thus in the presence of copper, the coefficients of vari-
ation were between 3.6 and 4.1% (Table 3). After correcting the
fluorescence data using the Stern-Volmer model, RSD decreased to
2.2e2.4%, while simple power or linear fitting reduced RSD even
further to 1.3e2.2%.

3.5. Trigger threshold for detecting entrained contaminants

Trigger thresholds (TT) for observing significant changes in the
levels of each chemical and microbial parameter in the distribution
network are presented in Table 4. Relative trigger thresholds
(TTrel ¼ threshold/mean) for humic-like fluorescence were low
(1.1e1.3), reflecting high measurement precision and stable fluo-
rescence intensities across the network, and indicating that a
sample with fluorescence intensity only 10% higher than the
network average could be identified as being an outlier. Due to the
highly variable DOC concentrations in the distribution system, soil
water entrainment would have been undetectable on the basis of
DOC. Trace metals had higher relative trigger thresholds than
fluorescence (1.4e6.2) and would need to change by a larger rela-
tive amount before they would be distinguishable from natural
variation. For slow-growing bacteria with TTrel around 3.9, a sample
would not appear to be an outlier so long as microbial abundances
were less than 390% of the network average (i.e. <120 cfu/mL in this
study). Trigger thresholds could not be determined for other mi-
crobial indicator species, due to too many non-detects.

4. Discussion

DOM optical properties are well-established water-quality
tracers including for the treatment of drinking water (Murphy et al.,
2011; Shutova et al., 2014; Stedmon et al., 2011). However, fewDOM
data have been reported from point-of-use in distribution net-
works, and it is unknown how much variability can be expected
from spectroscopic measurements in stable systems. The network
in this study had no known microbial issues, according to both this
study and long-term (bimonthly) monitoring by the municipality.
All houses sampled on the network produced samples with non-

detectable levels of E. coli, Enterococcus spp. and coliforms,
together with low abundances of culturable bacteria (3-day and 7-
day HPC). Globally, abundances of HPC bacteria vary widely in
drinking water distribution systems (<0.02-104 cfu/mL) depending
on a range of factors including DOC and source water quality,
treatment efficiency, distribution time, disinfection residual, and
pipe condition (Allen et al., 2004). Elevated abundances of slow-
growing bacteria were observed in this study in the section of the
distribution network with longest water residence time; even so,
concentrations were always below 110 cfu/mL and never
approached levels for concern. Only weak correlations were
observed between DOM optical measurements and HPC bacterial
abundances, and only at locations where water residence time and
microbial abundances were highest, suggesting that most observed
variability was due to noise.

Due to a general lack of published reports on DOM in distribu-
tion networks, few data could be located for comparing to the
current dataset. Tryptophan-like fluorescence was previously
measured in Australian potable and recycled water networks
(Hambly et al., 2010), where it was assessed as a tracer of cross-
connections. Intensities in that study were measured in situ and
reported in arbitrary units so cannot be directly compared with the
current study, however the relative standard deviation of
tryptophan-like fluorescence measurements in the Australian
study was approximately three times higher than in the current
study (RSD ¼ 33% and 11%, respectively). This is not surprising,
because in-situ fluorometers are generally much less sensitive than
benchtop fluorometers and produce noisier data. Additionally,
tryptophan-like fluorescence depends on microbial activity (Moran
et al., 2000), which would have been supressed by the winter
temperatures in Sweden in comparison to Australian conditions.

For any water quality tracer, the more predictable its concen-
tration within the distribution network, the easier it would be to
detect contaminated water entrained through damaged pipes. In
the current study, fluorescence was the most sensitive tracer
among the suite of parameters measured due to high measurement
precision and low variability across the network. The minimum
amount of contaminated water detectable in practice depends

Fig. 4. Spatial distributions of (a) slow-growing (7-day) bacteria, and (b) water residence time, at houses in the G€avle distribution network. Sites are classified according to category
ranging from high (darkest triangle) to low (lightest triangle). The water treatment plant (WTP) is shown as a red circle. Sites within the southeast network are shown enclosed in a
dashed square. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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upon the characteristics of the contaminant and the drinking wa-
ter: as the difference between the two end-members increases,
smaller entrainments can be detected. In the network, the average
F1 fluorescence intensity was 0.4 RU. If mixed with our soil water
sample (F1 ¼ 1.4 RU), then the contaminated water would need to
represent at least 4% of the total sample volume before it could be

detected on the basis of fluorescence. After taking copper concen-
trations into account, a 2% infiltration of soil water would be
detectable. Note that if the fluorescence signal of the entrained soil
water decreases significantly due to interactions with copper,
chlorine or other interferents, this would reduce overall sensitivity
for detecting an infiltration event by fluorescence spectroscopy.

In comparison to humic-like tracers, tryptophan-like fluores-
cence exhibited higher measurement variation (RSD ¼ 11%) even
though its fluorescence was not quenched by copper. This vari-
ability could not be attributed to any other parameters monitored
in this study, and probably reflects the higher lability as well as
greater risk for contamination of this peak by trace amounts of
organic matter. To provide comparable sensitivity to a humic-like
tracer, tryptophan-like fluorescence would need to be at least ten
times higher in the contaminated end-member than in the drinking
water end-member. This would not be unusual if the contaminant
were sewage, where tryptophan-like fluorescence intensities
frequently exceed drinking water levels by several orders of
magnitude (Baker et al., 2015; Sorensen et al., 2015). E. coli con-
centrations and tryptophan fluorescence in environmental samples
have been shown to correlate approximately linearly over a seven-
log range (Baker et al., 2015). If so, tryptophan-like fluorescence
could be a sensitive tracer of entrained sewage due to its low
detection threshold coupled with high measurement precision.

Copper reduced the measured intensities of humic-like fluo-
rescence in this study, as has been observed in other aquatic sys-
tems (Xu et al., 2013; Yamashita and Jaffe, 2008). Themain source of
copper is likely to have been the corrosion of interior copper
plumbing in the buildings (WHO, 2011). Copper also represented
around 0.7% of the pipe materials in the municipal distribution
system. Humic-like fluorescence varied inversely with copper
across sampling sites, with copper explaining 63% of the variation
in fluorescence measurements under a linear regression model,
compared with 43% for the modified Stern-Volmer model. The
modest fit of the Stern-Volmer model may be due to relatively low
copper concentrations in this study (Cu/DOC < 1/50) compared to
the ranges typically studied (Cu/DOC< 1/25) (Reynolds and Ahmad,
1995). The initial fraction of fluorescence contributing to quenching
was also smaller than previously reported, possibly due to
competition with calcium and magnesium ions for copper-binding
sites (Ryan andWeber, 1982). The suppression of DOM fluorescence
by copper should thus be expected to vary between distribution
systems, between sections of a network, and between nearby
buildings on the network.

Fig. 5. Correlations between DOM optical measurements and copper in the distribu-
tion network. (a) Relative fluorescence intensity (fluorescence/0.33) of component F2
versus copper concentration. The solid line fits a power-regression model (R2 ¼ 0.62),
the dashed line a modified Stern-Volmer model (R2 ¼ 0.43). Closed circles show un-
corrected data and open squares show corrected data assuming zero copper present
under the power model. t (b) A254 versus copper concentration, R2 ¼ 0.2.

Table 2
Conditional stability constants (log KM) and initial fraction, f, calculated using the modified Stern-Volmer model for humic-like fluorescence components in this study,
compared to similar components in published studies.

Complexation parameters in this study (Kirchman et al., 2000; Yamashita and Jaffe, 2008) (Xu et al., 2013)

PARAFAC component log KM f PARAFAC component Log KM f PARAFAC component log KM f

F1 6.24 0.12 Component 1 4.91 0.54 Humic-like fluorescence 5.10 0.80
F2 6.36 0.14 Component 6 5.45 0.30
F3 6.25 0.14 Component 2 4.81 0.61

Table 3
Variation (RSD x 100%) in fluorescence intensities across the distribution network.
Uncorrected data are compared with data corrected for quenching by copper using a
modified Stern-Volmer model, a linear model, and a power-fit model.

Component Uncorrected Stern-Volmer Linear Power-fit

F1: 314/408 3.6 2.2 1.9 1.9
F2: 359/443 3.8 2.2 2.1 2.0
F3: 389/508 4.1 2.4 1.3 2.2
F4: 290/351 11 e e e
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Water suppliers in some cities internationally have already
made significant investments in online spectrophotometers for
monitoring distribution systems, mainly using absorbance spec-
troscopy (Anon. 2013). In this study, absorbancewas a less sensitive
water quality tracer than was humic-like fluorescence; a 20% in-
crease in A254 relative to the system average would be needed to
trigger an outlier compared to a 10% increase for fluorescence,
although absorbance exhibits a smaller natural range. For online
instrumentation, however, the optimal choice of online technology
depends greatly on instrument cost and reliability. Also, although
chlorine reaction time was not a confounding factor in this study
due to a low chlorine dose and long exposure times, differential
chlorine exposure could introduce artefacts that particularly affect
online fluorescence monitoring, especially if chlorine doses are
high and distribution times vary from hours to days.

For all parameters, since measurement variation increases over
spatial and temporal scales, the detection threshold calculated in
this study would almost certainly improve if comparing measure-
ments at the tap with measurements at various local hubs located
in network pipes, instead of with measurements from all house-
holds on the network. This would limit spatial and temporal vari-
ation, the effects of different household plumbing, and different
degrees of chlorine exposure. Also, by comparing network hubs
with one another, problems originating in the main pipe network
could be isolated more easily.

5. Conclusions

� Organic matter fluorescence measurements in a functional and
stable drinking water distribution system were well above
detection limit and exhibited high measurement precision and
low fluctuations across the network. Four independently vary-
ing fluorescence components were detected.

� Potential contamination in the distribution system that results
in visible wavelength fluorescence exceeding the network
average by 10% would be easily detectable.

� In-situ fluorometers should be capable of sensitively monitoring
water quality changes in distribution systems between source
and consumers, although issues related to reliability, sensitivity

and calibration present technical hurdles worthy of further
development and investigation.

� Trace metals can interfere with spectroscopic measurements in
the distribution system and increase detection thresholds for
observing significant changes in organic matter quality. It is
therefore important to consider trace metals when investigating
DOM fluorescence as a potential tracer of contamination in
unfamiliar networks.
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