20 research outputs found

    The Molecular and Evolutionary Outcomes of Transgenerational Plasticity in Mimulus guttatus

    Get PDF
    Derived from the same family line, in the same greenhouse, and self-pollinated in an identical fashion, what effect could hole-puncher induced leaf damage have on the offspring of these individuals? Across three independent experiments during my graduate career I have demonstrated the diverse array of lingering epigenetic, gene expression, phenotypic, and fitness effects that simple mechanical wounding has on the following generation. While focused initially on the epigenetic and gene expression basis of increased trichome density in the offspring of damaged plants, it became clear early on that a host of other pathways were also differentially regulated. In the end I identified hundreds of differentially expressed genes and thousands of genomic regions where DNA methylation varied depending on parental wounding. Along with identifying numerous differentially regulated hormone synthesis genes and secondary metabolism pathways, I twice confirmed the differential regulation of the previously identified transgenerationally plastic Mimulus guttatus MYB Mixta-like 8 (MgMYBML8). A brief foray into molecular epigenetics and gene expression modeling provided our lab with the necessary information to utilize DNA methylation data and test hypotheses regarding the role of DNA methylation on transgenerational inheritance. Finally, through the use of a two-generation common garden experiment I demonstrated that transgenerational effects alter the development and resistance of plants in nature. While much remains to be deciphered regarding the molecular underpinnings, evolutionary role, and ecological relevance of transgenerational inheritance, the work presented herein provides a relatively comprehensive look at the complexity underlying an extremely simplified case of transgenerational inheritance

    Parental experience modifies the Mimulus methylome

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Background Transgenerational plasticity occurs when the environmental experience of an organism modifies the growth and development of its progeny. Leaf damage in Mimulus guttatus exhibits transgenerational plasticity mediated through differential expression of hundreds of genes. The epigenetic mechanisms that facilitate this response have yet to be described. Results We performed whole genome bisulfite sequencing in the progeny of genetically identical damaged and control plants and developed a pipeline to compare differences in the mean and variance of methylation between treatment groups. We find that parental damage increases the variability of CG and CHG methylation among progeny, but does not alter the overall mean methylation. Instead it has positive effects in some regions and negative in others. We find 3,396 CHH, 203 CG, and 54 CHG Differentially Methylated Regions (DMRs) ranging from tens to thousands of base pairs scattered across the genome. CHG and CHH DMRs tended to overlap with transposable elements. CG DMRs tended to overlap with gene coding regions, many of which were previously found to be differentially expressed. Conclusions Genome-wide increases in methylome variation suggest that parental conditions can increase epigenetic diversity in response to stress. Additionally, the potential association between CG DMRs and differentially expressed genes supports the hypothesis that differential methylation is a mechanistic component of transgenerational plasticity in M. guttatus.University of Kansas Botany EndowmentNSF IOS-0951254Kansas-INBRE P20-GM10341

    DNA methylation and gene expression in Mimulus guttatus

    Get PDF
    Background The presence of methyl groups on cytosine nucleotides across an organism’s genome (methylation) is a major regulator of genome stability, crossing over, and gene regulation. The capacity for DNA methylation to be altered by environmental conditions, and potentially passed between generations, makes it a prime candidate for transgenerational epigenetic inheritance. Here we conduct the first analysis of the Mimulus guttatus methylome, with a focus on the relationship between DNA methylation and gene expression. Results We present a whole genome methylome for the inbred line Iron Mountain 62 (IM62). DNA methylation varies across chromosomes, genomic regions, and genes. We develop a model that predicts gene expression based on DNA methylation (R2 = 0.2). Post hoc analysis of this model confirms prior relationships, and identifies novel relationships between methylation and gene expression. Additionally, we find that DNA methylation is significantly depleted near gene transcriptional start sites, which may explain the recently discovered elevated rate of recombination in these same regions. Conclusions The establishment here of a reference methylome will be a useful resource for the continued advancement of M. guttatus as a model system. Using a model-based approach, we demonstrate that methylation patterns are an important predictor of variation in gene expression. This model provides a novel approach for differential methylation analysis that generates distinct and testable hypotheses regarding gene expression

    piRNAs Are Associated with Diverse Transgenerational Effects on Gene and Transposon Expression in a Hybrid Dysgenic Syndrome of D. virilis

    Get PDF
    Sexual reproduction allows transposable elements (TEs) to proliferate, leading to rapid divergence between populations and species. A significant outcome of divergence in the TE landscape is evident in hybrid dysgenic syndromes, a strong form of genomic incompatibility that can arise when (TE) family abundance differs between two parents. When TEs inherited from the father are absent in the mother's genome, TEs can become activated in the progeny, causing germline damage and sterility. Studies in Drosophila indicate that dysgenesis can occur when TEs inherited paternally are not matched with a pool of corresponding TE silencing PIWI-interacting RNAs (piRNAs) provisioned by the female germline. Using the D. virilis syndrome of hybrid dysgenesis as a model, we characterize the effects that divergence in TE profile between parents has on offspring. Overall, we show that divergence in the TE landscape is associated with persisting differences in germline TE expression when comparing genetically identical females of reciprocal crosses and these differences are transmitted to the next generation. Moreover, chronic and persisting TE expression coincides with increased levels of genic piRNAs associated with reduced gene expression. Combined with these effects, we further demonstrate that gene expression is idiosyncratically influenced by differences in the genic piRNA profile of the parents that arise though polymorphic TE insertions. Overall, these results support a model in which early germline events in dysgenesis establish a chronic, stable state of both TE and gene expression in the germline that is maintained through adulthood and transmitted to the next generation. This work demonstrates that divergence in the TE profile is associated with diverse piRNA-mediated transgenerational effects on gene expression within populations

    Parental experience modifies the Mimulus methylome

    No full text
    Abstract Background Transgenerational plasticity occurs when the environmental experience of an organism modifies the growth and development of its progeny. Leaf damage in Mimulus guttatus exhibits transgenerational plasticity mediated through differential expression of hundreds of genes. The epigenetic mechanisms that facilitate this response have yet to be described. Results We performed whole genome bisulfite sequencing in the progeny of genetically identical damaged and control plants and developed a pipeline to compare differences in the mean and variance of methylation between treatment groups. We find that parental damage increases the variability of CG and CHG methylation among progeny, but does not alter the overall mean methylation. Instead it has positive effects in some regions and negative in others. We find 3,396 CHH, 203 CG, and 54 CHG Differentially Methylated Regions (DMRs) ranging from tens to thousands of base pairs scattered across the genome. CHG and CHH DMRs tended to overlap with transposable elements. CG DMRs tended to overlap with gene coding regions, many of which were previously found to be differentially expressed. Conclusions Genome-wide increases in methylome variation suggest that parental conditions can increase epigenetic diversity in response to stress. Additionally, the potential association between CG DMRs and differentially expressed genes supports the hypothesis that differential methylation is a mechanistic component of transgenerational plasticity in M. guttatus

    RawPhenotypeData

    No full text
    This is a comma delimited file (.csv) which contains phenotype data for 1,745 E. guttata individuals grown in either a low elevation or high elevation common garden in central Oregon. These common gardens included lines derived from collections four populations (low and high elevation populations in California and Oregon) as well as two F4 outbred mapping populations derived from initial crosses between low and high elevation plants from California and Oregon respectively

    Lagging Adaptation to Climate Supersedes Local Adaptation to Herbivory in an Annual Monkeyflower.

    No full text
    While native populations are often adapted to historical biotic and abiotic conditions at their home site, populations from other locations in the range may be better adapted to current conditions due to changing climates or extreme conditions in a single year. We examine whether local populations of a widespread species maintain a relative advantage over distant populations that have evolved at sites better matching the current climate. Specifically, we grew lines derived from low- and high-elevation annual populations in California and Oregon of the common monkeyflower (Erythranthe guttata) and conducted phenotypic selection analyses in low- and high-elevation common gardens in Oregon to examine relative fitness and the traits mediating relative fitness. Californian low-elevation populations have the highest relative fitness at the low-elevation site, and Californian high-elevation populations have the highest relative fitness at the high-elevation site. Relative fitness differences are mediated by selection for properly timed transitions to flowering, with selection favoring more rapid growth rates at the low-elevation site and greater vegetative biomass prior to flowering at the high-elevation site. Fitness advantages for Californian plants occur despite incurring higher herbivory at both sites than the native Oregonian plants. Our findings suggest that a lag in adaptation causes maladaptation in extreme years that may be more prevalent in future climates, but local populations still have high growth rates and thus are not yet threatened

    A tool for rapid, automated characterization of population epigenomics in plants

    No full text
    Abstract Epigenetic variation in plant populations is an important factor in determining phenotype and adaptation to the environment. However, while advances have been made in the molecular and computational methods to analyze the methylation status of a given sample of DNA, tools to profile and compare the methylomes of multiple individual plants or groups of plants at high resolution and low cost are lacking. Here, we describe a computational approach and R package (sounDMR) that leverages the benefits of long read nanopore sequencing to enable robust identification of differential methylation from complex experimental designs, as well as assess the variability within treatment groups and identify individual plants of interest. We demonstrate the utility of this approach by profiling a population of Arabidopsis thaliana exposed to a demethylating agent and identify genomic regions of high epigenetic variability between individuals. Given the low cost of nanopore sequencing devices and the ease of sample preparation, these results show that high resolution epigenetic profiling of plant populations can be made more broadly accessible in plant breeding and biotechnology
    corecore