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Abstract	
	

	 Derived	from	the	same	family	line,	in	the	same	greenhouse,	and	self-pollinated	in	an	

identical	fashion,	what	effect	could	hole-puncher	induced	leaf	damage	have	on	the	offspring	

of	these	individuals?	Across	three	independent	experiments	during	my	graduate	career	I	

have	demonstrated	the	diverse	array	of	lingering	epigenetic,	gene	expression,	phenotypic,	

and	fitness	effects	that	simple	mechanical	wounding	has	on	the	following	generation.	While	

focused	initially	on	the	epigenetic	and	gene	expression	basis	of	increased	trichome	density	

in	the	offspring	of	damaged	plants,	it	became	clear	early	on	that	a	host	of	other	pathways	

were	also	differentially	regulated.	In	the	end	I	identified	hundreds	of	differentially	

expressed	genes	and	thousands	of	genomic	regions	where	DNA	methylation	varied	

depending	on	parental	wounding.	Along	with	identifying	numerous	differentially	regulated	

hormone	synthesis	genes	and	secondary	metabolism	pathways,	I	twice	confirmed	the	

differential	regulation	of	the	previously	identified	transgenerationally	plastic	Mimulus	

guttatus	MYB	Mixta-like	8	(MgMYBML8).	A	brief	foray	into	molecular	epigenetics	and	gene	

expression	modeling	provided	our	lab	with	the	necessary	information	to	utilize	DNA	

methylation	data	and	test	hypotheses	regarding	the	role	of	DNA	methylation	on	

transgenerational	inheritance.		Finally,	through	the	use	of	a	two-generation	common	

garden	experiment	I	demonstrated	that	transgenerational	effects	alter	the	development	

and	resistance	of	plants	in	nature.			While	much	remains	to	be	deciphered	regarding	the	

molecular	underpinnings,	evolutionary	role,	and	ecological	relevance	of	transgenerational	

inheritance,	the	work	presented	herein	provides	a	relatively	comprehensive	look	at	the	

complexity	underlying	an	extremely	simplified	case	of	transgenerational	inheritance.	
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Preface	

	 On	a	mountain	meadow	freshly	clear	of	snow,	the	imminent	spectacle	of	diversity	is	

shrouded	in	a	uniform	coat	of	germinating	green.		In	a	few	weeks	the	slope	will	be	a	patchy	

assortment	of	textures	and	hues,	but	for	now	that	potential	is	hidden	within	the	cell	walls	

of	each	seedling.	From	a	common	origin,	what	causes	a	single	wildflower	to	develop	as	it	

does,	unique	from	each	other	nearby	speck	of	life?	Fundamentally,	genetic	and	

environmental	differences	are	the	only	factors	that	will	inevitably	differentiate	any	two	

organisms.	Were	earth	homogenous,	genetic	and	environmental	factors	would	not	interact,	

biology	would	be	simpler,	and	my	doctoral	dissertation	would	be	a	master’s	thesis.				

	 Instead,	the	ability	to	detect	environmental	conditions	and	alter	growth	accordingly	

has	been	selected	for	time	and	time	again,	leading	to	a	third	cause	of	natural	variation:	

environmental	x	genetic	factors.	These	factors,	known	as	“phenotypic	plasticity”,	have	

evolved	to	respond	to	countless	biotic	and	abiotic	parameters,	and	are	present	across	the	

diversity	of	life.	If	current	conditions	are	a	reliable	predictor	of	future	conditions,	

phenotypic	plasticity	is	advantageous.		Following	the	hypothesis	above,	if	current	

environmental	conditions	are	correlated	with	the	environment	of	the	next	generation,	then	

the	transmission	of	environmentally	altered	developmental	trajectories	between	

generations	(transgenerational	phenotypic	plasticity;	TPP)	are	also	adaptive.			

	 This	ability	for	the	environment	experienced	by	an	individual	to	alter	the	growth	of	

their	offspring	is	the	focus	of	my	thesis,	and	represents	a	unique	basis	of	variation.	What	

causes	a	single	wildflower	to	develop	as	it	does?		An	assemblage	of	genetic	factors,	

environmental	factors,	and	interactions	between	these	two	that	occur	within	a	lifetime	

(phenotypic	plasticity)	or	are	inherited	as	lingering	signals	from	generations	past	(TPP).		
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Introduction	

	 Plant-herbivore	interactions	represent	one	of	the	most	common	biological	

interactions	on	earth,	positioned	at	a	fundamental	position	near	the	base	of	most	food	

webs.		Genetic	selection	in	response	to	local	herbivore	levels,	plastic	responses	to	

herbivore	damage,	and	transgenerational	plasticity	to	conditions	experienced	in	the	prior	

generation	allow	plants	to	modify	their	growth	in	the	presence	of	herbivores.	While	these	

first	two	classes	of	plant	responses	to	herbivores	have	been	popular	avenues	of	research	

for	decades	(Caswell	and	Reed	1976;	Rhoades	and	Cates	1976;	Coppock	et	al.	1983;	Coley	

1988;	Mole	1994;	Agrawal	et	al.	2002;	Wu	and	Baldwin	2010;	Agrawal	et	al.	2012),	the	role	

of	TPP	in	this,	or	any,	response	has	only	recently	received	attention	(AGRAWAL	et	al.	1999;	

AGRAWAL	2002;	GALLOWAY	and	ETTERSON	2007;	HOLESKI	et	al.	2013b).		Plant’s	detect	and	

respond	to	herbivores	through	a	myriad	of	mechanisms,	including	chemical	receptors	that	

detect	insect	saliva,	regurgitant,	and	chitin	(Gatehouse	2002),	as	well	as	gaseous	signaling	

molecules	(Yan	et	al.	2013),	and	more	general	responses	to	mechanical	wounding	

(Mithöfer	et	al.	2005).		In	this	thesis	I	investigate	the	gene	expression,	epigenetic,	and	

evolutionary	consequences	of	TPP	to	mechanical	wounding	in	Mimulus	guttatus.	

	 Prior	to	my	arrival	at	the	University	of	Kansas	it	was	discovered	that	numerous	lines	

of	M.	guttatus	respond	to	wounding	(hole-puncher	induced)	through	the	production	of	

more	trichomes	(leaf	hairs)	(Holeski	2007).		Additionally,	a	single	candidate	gene	was	

identified	that	appeared	to	be	associated	with	this	response	(Scoville	et	al.	2011),	and	a	

genomic	region	was	mapped	that	controls	within	generation	trichome	plasticity	(Holeski	et	

al.	2010).	During	the	course	of	my	dissertation	research	I	have	expanded	upon	this	system	

by	comparing	whole	genome	epigenetic	and	gene	expression	changes	in	response	to	
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parental	wounding,	how	these	two	are	related,	and	the	evolutionary	potential	of	this	

system	of	inheritance.		

	 In	the	first	chapter	of	my	thesis	I	utilize	a	known	transgenerationally	responsive,	

and	nearly	completely	homozygous	line	(Recombinant	Inbred	Line	94:	RIL	94)	to	explore	

how	gene	expression	patterns	shift	in	response	to	parental	wounding.	By	growing	

seedlings	in	common	conditions	and	only	altering	the	presence	or	absence	of	wounding	in	

their	parents	we	were	able	to	assay	the	role	of	TPP	on	plant	development.		Prior	to	this	

experiment,	candidate	gene	approaches	had	identified	a	few	genes	that	responded	

plastically	to	parental	environments	(Bilichak	et	al.	2012;	Rasmann	et	al.	2012);	however	

this	was	the	first	analysis	to	look	into	the	global	patterns	of	differential	expression	in	TPP.	

This	study	allowed	us	to	discover	the	magnitude	of	the	genome	that	shows	significant	

regulatory	shift	in	response	to	parental	wounding	(ca.	4%),	the	patterns	of	co-regulation	in	

this	response,	and	identify	other	candidate	pathways	and	phenotypes	that	appear	highly	

plastic	to	parental	environment.		

	 Once	I	discovered	the	vast	scale	of	differential	gene	expression	due	to	parental	

wounding,	I	began	to	wonder	what	the	cause	of	this	differential	expression	was.		Previous	

work	in	the	field	had	pointed	at	germ-line	transmissive	epigenetic	regulatory	elements	as	

being	of	prime	importance	in	TPP	(HOLESKI	et	al.	2012;	MCCUE	et	al.	2012;	RASMANN	et	al.	

2012;	SHEN	et	al.	2012;	SLAUGHTER	et	al.	2012;	VERHOEVEN	and	VAN	GURP	2012b;	YANG	et	al.	

2012;	BOND	and	BAULCOMBE	2014b).	Epigenetic	regulation	consists	of	a	three-part	system	in	

which	histone	modification,	small	RNAs,	and	DNA	methylation	are	regulated	by	

developmental	and	environmental	signals,	and	function	in	unison	to	regulate	gene	

expression.		Due	to	rapidly	advancing	methods(Miura	et	al.	2012),	and	a	clear	role	in	other	
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cases	of	plasticity	(Verhoeven	et	al.	2010;	Kou	et	al.	2011;	Dowen	et	al.	2012)	DNA	

methylation	was	of	particular	interest	to	me.		However,	before	I	began	looking	for	patterns	

of	differential	methylation,	a	brief	foray	to	Japan	to	learn	a	new	method	of	methylome	

sequencing	and	construct	a	M.	guttatus	reference	methylome	was	necessary.	

	 Through	the	use	of	whole-genome	bisulfite	sequencing	I	was	able	to	estimate	the	

methylation	frequency	for	most	of	cytosine	nucleotides	in	the	M.	guttatus	genome.		Genome	

wide	results	confirmed	the	relative	normalcy	of	this	methylome	compared	to	other	

angiosperms	(ZHANG	et	al.	2006;	LI	et	al.	2012;	SAZE	et	al.	2012;	EICHTEN	et	al.	2013a;	WANG	

et	al.	2014),	but	the	primary	focus	of	this	study	was	to	determine	the	relationship	between	

methylation	and	gene	expression.		We	utilized	prior	gene	expression	results	to	determine	

that	gene	size	and	the	various	classes	of	DNA	methylation	could	explain	approximately	

20%	of	variation	in	gene	expression.			Then,	I	returned	to	the	experimental	system	utilized	

in	our	differential	expression	study	to	compare	patterns	of	methylation	in	the	offspring	of	

damaged	plants,	and	see	if	the	predicted	regulatory	role	of	DNA	methylation	on	gene	

expression	explains	the	patterns	observed	in	the	progeny	of	damaged	plants.		

	 We	found	thousands	of	genomic	regions	where	the	offspring	of	damaged	and	

control	plants	were	differentially	methylated.	These	patterns	of	differential	methylation	

were	congruent	with	our	hypotheses	regarding	the	role	of	methylation	in	gene	regulation,	

and	confirm	a	role	of	differential	methylation	in	TPP.		Of	significant	interest	we	found	

evidence	that	some	classes	of	DNA	methylation	seem	to	regulate	up-stream	

environmentally	responsive	proteins,	and	other	classes	seem	to	be	involved	in	the	down-

stream	outcomes	of	plasticity.		Additionally,	the	offspring	of	wounded	plants	have	more	

variable	gene	body	methylation	and	gene	expression	than	the	progeny	of	control	plants.		
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From	these	three	chapters	we	shed	new	light	on	the	basis	of	TPP	and	the	relationship	

between	DNA	methylation	and	gene	expression	in	well-controlled	greenhouse	conditions.		

In	my	final	chapter	I	consider	TPP	to	leaf	wounding	across	multiple	natural	populations,	

and	the	effects	of	this	treatment	on	their	offspring’s	growth	in	the	field.	

	 To	test	for	the	effects	of	TPP	in	nature,	I	assayed	16	natural	M.	guttatus	populations	

for	trichome	density	and	herbivory,	and	collected	seed	and	grew	their	progeny	in	the	

greenhouse.		During	this	experimental	generation	the	plants	were	split	into	damaged	and	

control	groups,	and	seed	was	collected	from	hand-pollinated	plants	in	each	group.		Then	I	

took	seed	form	these	offspring	to	field	common	gardens	to	explore	the	potential	role	of	

parental	environment	on	offspring	growth	and	resistance	in	field	conditions.		Very	few	

other	studies	had	documented	transgenerational	plasticity	of	traits	related	to	fitness	

components	in	nature	(Galloway	and	Etterson	2007;	Galloway	and	Etterson	2009),	and	

here	we	provide	evidence	for	the	relevance	of	TPP	in	this	context.		

	 Taken	together,	the	observations	presented	in	this	dissertation	offer	a	glimpse	into	

the	epigenetic	underpinnings,	diverse	gene	expression	responses,	and	potential	

evolutionary	consequences	of	a	particular	type	of	TPP	in	a	single	species.	While	this	work	

needs	to	be	greatly	expanded	upon	both	taxonomically	and	ecologically,	it	provides	a	

foundation	for	such	future	studies,	and	suggests	that	in	addition	to	genetic	inheritance,	

environmental	information	can	be	directly	passed	between	generations.	
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CHAPTER	1*	
	

Gene	expression	plasticity	resulting	from	parental	leaf	damage	in	Mimulus	guttatus	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

*	COLICCHIO,	J.	M.,	P.	J.	MONNAHAN,	J.	K.	KELLY	and	L.	C.	HILEMAN,	2015	Gene	expression	
plasticity	resulting	from	parental	leaf	damage	in	Mimulus	guttatus.	New	Phytologist	205:	
894-906.	
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Abstract	
• Leaf	trichome	density	in	Mimulus	guttatus	can	be	altered	by	parent	environment.	In	

this	study,	we	compare	global	gene	expression	patterns	in	progeny	of	damaged	and	

control	plants.	Significant	differences	in	gene	expression	likely	explain	the	observed	

trichome	response,	and	identify	additional	responsive	pathways.	

• Using	whole	transcriptome	RNA	sequencing,	we	estimate	differential	gene	

expression	between	isogenic	seedlings	whose	parents	had,	or	had	not,	been	subject	

to	leaf	damage.	

• We	identify	over	900	genes	that	are	differentially	expressed	in	response	to	parental	

wounding.	These	genes	cluster	into	groups	involved	in	cell	wall	and	cell	membrane	

development,	stress	response	pathways,	and	secondary	metabolism.		

• Gene	expression	is	modified	due	to	parental	environment	in	a	targeted	way	that	

likely	alters	multiple	developmental	pathways,	and	may	increases	progeny	fitness	if	

they	experience	environments	similar	to	that	of	their	parents.		
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Introduction	

Transgenerational	phenotypic	plasticity,	whereby	a	component	of	individual	phenotype	is	

determined	by	parental	environment,	has	been	demonstrated	for	a	number	of	

environmental	factors	in	a	variety	of	plant	species	(AGRAWAL	et	al.	1999;	HOLESKI	et	al.	2012;	

JABLONKA	2012).	Transgenerational	plasticity	can	be	adaptive	when	the	environment	is	

variable	and	offspring	are	likely	to	experience	environmental	conditions	similar	to	their	

parents	(MOUSSEAU	and	FOX	1998;	GALLOWAY	and	ETTERSON	2007).	Indeed,	many	studies	

have	linked	parent	pathogen	and	herbivore	damage	(simulated	and	real)	to	offspring	

defensive	phenotypes	including	trichome	density,	growth	rate,	and	the	production	of	

secondary	metabolites	(AGRAWAL	2002;	HOLESKI	2007;	SCOVILLE	et	al.	2011;	RASMANN	et	al.	

2012;	SLAUGHTER	et	al.	2012;	HOLESKI	et	al.	2013b).	Abiotic	stresses	such	as	salt	(BOYKO	and	

KOVALCHUK	2010),	UV	radiation	(MOLINIER	et	al.	2006),	heat	(BOYKO	et	al.	2010),	and	cold	

(BLÖDNER	et	al.	2007)	have	been	shown	to	alter	progeny	phenotypes	as	well.	Clearly,	a	

diversity	of	plant-environment	interactions	produce	meiotically	heritable	signals	that	can	

subsequently	alter	offspring	development.	

The	nature	of	transgenerational	signals,	and	how	they	are	propagated,	remains	a	mystery.	

However,	recent	studies	suggest	that	epigenetic	mechanisms	(small	RNAs	(sRNA),	DNA	

methylation,	and	histone	modification)	are	essential	for	establishing	and	maintaining	

transgenerational	phenotypic	plasticity	(GUTZAT	and	MITTELSTEN	SCHEID	2012;	PIETERSE	

2012).	Environmentally	induced	phytohormones	(e.g.,	jasmonic	acid,	salicylic	acid,	

ethylene)	can	lead	to	epigenetic	regulatory	changes	in	functional	genes	and	transposable	

elements,	which	may	be	transmissible	between	generations	(SUNKAR	et	al.	2007;	

CHINNUSAMY	et	al.	2008;	VERHOEVEN	et	al.	2010;	SI-AMMOUR	et	al.	2011).	Additionally,	in	
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Arabidopsis	thaliana,	functional	epigenetic	machinery	(in	parent	plants)	appears	necessary	

for	the	transmission	of	induced	herbivore	resistance	in	subsequent	generations	(RASMANN	

et	al.	2012).	Law	et	al.	(2013)	have	recently	shown	that	a	component	of	the	sRNA	silencing	

machinery	(SHH1)	probes	the	histone	code	for	repressive	marks,	and	identifies	regions	of	

the	genome	to	be	transcribed	into	mobile	small	interfering	RNAs	(siRNA).	Therefore,	

targeted	developmental	or	environmentally	responsive	histone	modifications	may	

generate	locus	specific	mobile	stress	response	siRNAs	capable	of	entering	the	germ	line	

and	reiterating	stress-induced	epigenetic	markings.	Yet	how	epigenetic	signals	are	

produced,	transmitted,	and	affect	specific	phenotypes	remains	unclear	(MIROUZE	and	

PASZKOWSKI	2011).	

To	investigate	the	mechanisms	by	which	transgenerational	signals	propagate	offspring	

phenotypic	changes,	we	have	studied	a	subset	of	recombinant-inbred	lines	(RILs),	created	

through	a	cross	of	coastal	(Point	Reyes)	and	inland	(Iron	Mountain	767)	Mimulus	guttatus	

[Phrymacae	(BEARDSLEY	and	OLMSTEAD	2002)],	which	exhibit	transgenerational	plasticity	of	

trichome	density	in	response	to	parental	leaf	damage.	Offspring	of	leaf-damaged	parents	

develop	leaves	with	higher	trichome	density	compared	to	offspring	of	control	plants	

(HOLESKI	2007;	HOLESKI	et	al.	2010;	SCOVILLE	et	al.	2011)(Figure	1.1	and	Appendix	1).	We	

hypothesize	that	this	response	occurs	when	trichome	production	genes	are	differentially	

expressed	due	to	the	inheritance	of	a	transgenerational	wounding	signal.	Indeed,	Scoville	et	

al.	(2011)	found	that	a	putative	negative	regulator	of	trichome	production,	MgMYBML8	(a	

MYB	transcription	factor),	is	down-regulated	in	the	progeny	of	damage	compared	to	

control	plants.	Trichomes	are	thought	to	deter	herbivores	in	M.	guttatus	(HOLESKI	et	al.	

2010),	as	in	other	species	including	Arabidopsis	thaliana	and	Solanum	lycopersicum	(ÅGREN	
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and	SCHEMSKE	1993;	RASMANN	et	al.	2012).	If	herbivory	varies	in	such	a	way	that	attack	rate	

on	parents	is	a	good	indicator	of	herbivore	load	in	the	next	generation,	epigenetic	memory	

can	confer	a	fitness	advantage	(MOUSSEAU	and	FOX	1998).	

In	this	study	we	use	a	single	RIL	(RIL	94)	that	exhibits	transgenerational	phenotypic	

plasticity	for	trichome	density	to	analyze	global	gene	expression	plasticity	in	response	to	

parental	leaf	damage.	Using	a	high-throughput	RNA	sequencing	approach,	we	address	the	

scale	of	differential	gene	expression	in	M.	guttatus	due	to	parental	leaf	damage,	the	extent	

to	which	differentially	expressed	genes	appear	to	be	regulated	by	a	common	signal,	and	the	

evidence	for	enrichment	of	specific	classes	of	differentially	expressed	genes	with	special	

attention	to	functional	categories	related	to	plant	defense	responses.	Additionally,	we	test	

whether	our	previously	observed	transgenerational	response	of	MgMYBML8	(Scoville	et	al.,	

2011)	is	identified	in	this	independent	study	that	employs	a	whole	transcriptome	

approach.	This	study	does	not	identify	the	molecular	mechanism	responsible	for	

transgenerational	inheritance,	or	the	gene	(or	genes)	responsible	for	a	specific	

transgenerational	phenotype.	However,	this	study	is	a	first	quantification	of	

transgenerational	gene	expression	plasticity	in	plants,	and	provides	strong	evidence	that	

ecologically	relevant	information	is	transmitted	between	generations.		

	

METHODS	

Plant	Material	and	Experimental	Treatments	

A	single	RIL	94	parent	(F8	generation)	was	grown	under	non-stress	conditions	in	the	

University	of	Kansas	greenhouse.	We	self-fertilized	this	parent	and	grew	six	progeny	

individuals	in	4-inch	pots	according	to	standard	protocols	(HOLESKI	2007).	Three	of	the	six	
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individuals	were	randomly	assigned	to	the	damage	treatment	group.	For	damage	

treatment,	we	punched	two	holes	of	ca.	6	mm	diameter	in	each	leaf	at	the	developmental	

point	when	the	next	leaf	pair	had	expanded.	We	began	leaf	damage	at	the	2nd	leaf	pair	and	

continued	through	seed	collection.	To	produce	seed	for	the	experimental	generation	we	

self-fertilized	both	damaged	and	control	individuals.	We	sowed	this	seed	in	flats,	and	grew	

the	progeny	sets	(12	individuals	included	in	transcriptome	experiment)	under	identical,	

non-stress	conditions	(Holeski,	2007).	When	the	second	leaf	pair	of	seedlings	from	the	

experimental	population	were	just	visible,	we	collected,	flash	froze,	and	stored	at	-80°	C	all	

above	ground	tissue.	

	

Trichome	Phenotyping	

We	grew	additional	progeny	from	the	experimental	generation	in	the	absence	of	any	stress	

until	the	5th	leaf	pair	expanded	to	confirm	the	trichome	induction	phenotype.	We	took	

trichome	counts	by	folding	the	5th	leaf,	tip	to	base,	and	counting	the	number	of	glandular	

and	non-glandular	trichomes	on	the	underside	of	the	leaf	that	projected	from	the	leaf	fold	

across	the	full	transect	of	leaf	width.	Variation	in	leaf	size,	for	example	due	to	slight	

differences	in	developmental	stage,	might	alter	leaf	trichome	density	estimates.	Trichomes	

are	initiated	early	in	leaf	development	and	dispersed	across	the	leaf	during	expansion	

(Hülskamp	et	al.,	1994).	Therefore,	by	quantifying	trichome	production	across	a	full	

transect	of	the	leaf	we	are	likely	to	mitigate	the	effect	of	leaf	size	or	developmental	stage	on	

trichome	density	estimates.	We	have	previously	identified	an	effect	of	parent	leaf	damage	

on	trichome	production	using	an	alternative	method	that	relied	on	trichome	counts	within	

a	specified	leaf	area	(Holeski,	2007;	Scoville	et	al.,	2011).	We	find	that	results	from	
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quantification	across	a	leaf	transect	are	consistent	with	those	from	previous	quantifications	

within	a	specified	leaf	area.	Counts	for	both	5th	pair	leaves	were	taken	and	averaged.	Means	

were	transformed	using	a	log10(count+0.1).	We	then	performed	a	t-test	to	compare	

trichome	counts	between	individuals	from	damaged	(n=62)	and	undamaged	(n=67)	

parents.	We	repeated	the	transgenerational	trichome	induction	experiment	using	progeny	

of	four	additional	damaged	and	four	additional	undamaged	parent	plants.	Significant	

differences	in	trichome	production	were	assessed	using	a	nested	ANOVA	design	with	

treatment	as	a	fixed	effect	and	parent	of	origin	as	a	random	effect	nested	within	treatment.	

	

RNA-seq	and	Read	Mapping	

We	isolated	total	RNA	from	above	ground	seedling	tissue	(30-40	mg	per	seedling)	using	

Direct-zol	RNA	Mini-Prep	following	manufacturer’s	instructions	(Zymo	Research	

Corporation,	Irvine,	CA),	and	DNAse-treated	total	RNA	with	Turbo	DNA-free	(Applied	

Biosystems/Ambion,	Austin,	TX,	USA).	DNAse-treated	RNA	was	extracted	from	12	

individuals	for	RNA-sequencing	–	two	individuals	from	each	of	three	damage-treated	and	

control	parental	plants.	We	prepared	RNA-seq	libraries	using	Illumina	TruSeq	RNA	Sample	

Preparation	Kit	following	manufacturer’s	instructions	(Illumina	Incorporated,	San	Diego,	

CA,	USA).	We	Illumina	indexed	and	sequenced	(100	bp	paired	end	reads)	the	twelve	

libraries	on	four	HiSeq	2500	lanes	(six	samples	per	lane,	each	sample	run	in	two	lanes).		

Reads	from	each	of	the	twelve	samples	were	mapped	to	the	M.	guttatus	2.0	reference	

genome	(http://www.phytozome.net/mimulus_er.php)	using	the	CLC	Large	Gap	Read	

Mapping	algorithm.	We	used	genome	annotations	to	guide	the	mapping	of	reads	that	

spanned	introns.		Reads	mapped	to	24,919	of	27,851	annotated	transcripts.	Down-stream	
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differential	expression	analyses	were	based	on	quantification	of	reads	mapped	to	the	

24,919	annotated	genes.		

	

Differential	Expression	Testing	

We	used	a	consensus-method	to	call	differential	expression,	employing	five	commonly	used	

software	packages.	We	implemented	the	R	packages,	DESeq2	(ANDERS	and	HUBER	2010),	

EdgeR	(ROBINSON	et	al.	2010),	SAMseq	(LI	and	TIBSHIRANI	2011),	limma(voom)	(LAW	et	al.	

2013a),	and	NOISeq	(TARAZONA	et	al.	2011)	to	test	for	differential	transcript	abundance	

between	control	and	treatment	groups	(code	available	upon	request).	Briefly,	DESeq2	and	

EdgeR	are	both	parametric	tests	that	use	a	negative	binomial	model	to	account	for	over	

dispersion	of	read	counts.	EdgeR	assumes	a	common	dispersion	for	all	genes,	while	DESeq2	

obtains	dispersion	estimates	based	on	calculated	mean-variance	relationships	in	the	given	

data	set.	NOIseq	and	SAMseq	are	non-parametric	approaches.	NOIseq	generates	a	noise	

distribution	based	on	within	group	variation	and	calculates	a	q-value	based	on	divergence	

from	this	distribution	for	each	gene.	SAMseq	is	based	on	Wilcoxon	statistics	averaged	over	

numerous	samplings	of	the	data.	Finally,	limma(voom)	uses	the	voom	package	to	perform	a	

variance	stabilizing	transformation,	which	produces	“gene	weights”	that	mimic	traditional	

micro-array	data,	which	are	then	analyzed	as	such	(Soneson	&	Delorenzi,	2013).	All	

programs	normalize	read	count	per	gene	based	on	total	gene	depth	per	individual,	but	not	

by	gene	length	(as	we	are	not	comparing	gene	expression	between	different	alleles	or	

genes).	

In	order	to	increase	power	we	excluded	genes	with	very	low	expression	levels	(fewer	than	

60	mapped	reads	across	all	twelve	sequenced	libraries).	This	reduced	the	number	of	genes	
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tested	for	differential	expression	from	24,919	to	20,748.	Using	limma’s	correlation	

coefficient	calculation	we	determined	that	family	accounted	minimally	for	variance	in	gene	

expression	(1.02%)(LAW	et	al.	2013a).	Additionally,	both	EdgeR	and	limma	(but	not	the	

other	3	software	packages)	allowed	for	us	to	call	differential	expression	using	our	full	

nested	design	with	parent	plant	nested	within	treatment.	For	both,	a	similar	set	of	genes	

was	found	to	be	differentially	expressed	when	the	family	factor	was	included	(102	

additional	genes	with	EdgeR	and	5	additional	genes	with	limma).	Therefore,	we	believe	

that	using	a	simple	two	group	experimental	design	to	test	for	different	expression	between	

parental	damage	and	control	groups	in	each	of	these	five	packages	provides	a	conservative	

estimate	on	the	true	number	of	differentially	expressed	genes.	Using	p-values	from	each	of	

the	five	programs,	we	calculated	the	False	Discovery	Rate	(FDR)	for	each	gene	(null	

hypothesis	is	no	difference	between	treatments).	We	called	a	gene	differentially	expressed	

if	three	or	more	of	the	programs	found	the	gene	to	be	differentially	expressed	with	a	FDR	of	

<	0.1.	Using	variance	stabilized	gene	expression	data	(ANDERS	and	HUBER	2010),	we	

generated	expression	heatmaps	in	R	(GENTLEMAN	et	al.	2004).	We	used	Euclidean	Distance	

as	the	distance	function,	and	a	UPGMA	based	agglomerative	clustering	algorithm.		

	

Gene	Ontology	Annotation	and	KEGG	Mapping	

We	extracted	the	coding	sequences	of	all	genes	expressed	in	our	tissue	samples	and	used	

Blast2GO	(CONESA	et	al.	2005)	for	function	annotation.	Each	transcript	was	blasted	against	

the	nr	database,	assigned	Gene	Ontology	(GO)	IDs	through	the	mapping	feature,	and	

annotated	to	predict	gene	function.	Additionally,	we	used	GO	Slim	(ASHBURNER	et	al.	2000)	

in	Plant	DB	mode	to	remove	incorrect	annotations	as	well	as	to	add	plant	specific	GO	
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functional	categories.	We	tested	whether	differentially	expressed	transcripts,	or	subsets	of	

these	transcripts,	were	enriched	or	depleted	in	GO	Functional,	Cellular	Compartment,	or	

Molecular	Processes	IDs.	We	used	a	Fisher’s	exact	test	to	compare	GO	frequencies	against	

the	reference	set	of	all	transcripts	in	the	transcriptome,	and	imposed	a	FDR	<	0.05.	

Differentially	expressed	genes	were	additionally	mapped	to	the	Kyoto	Encyclopedia	of	

Genes	and	Genomes	(KEGG)	database	to	identify	enzymes	with	conserved	metabolic	

functions.	Using	the	KEGG-mapping	function	in	Blast2GO,	we	mapped	these	genes	to	their	

catalytic	position	on	one	of	91	separate	KEGG	metabolic	pathway	maps	(KANEHISA	et	al.	

2012).	

	

RT-qPCR	Confirmation	

To	validate	differential	expression	identified	by	RNA-seq,	we	performed	RT-qPCR	for	6	

candidate	genes:	Heat	Shock	Protein	6ab,	Strictosidine	Synthase,	Tyrosine	

Aminotransferase,	Heat	Shock	Protein	40,	Dormancy	Associated	Protein,	and	CHY	Zinc	

Finger	(transcript	ID#s	1428104,	1324230,	1358627,	1444264,	1495616,	and	1315072,	

respectively;	Appendix	2).	Candidate	genes	were	chosen	to	represent	three	genes	up-

regulated	and	three	down-regulated	in	response	to	parental	leaf	damage,	across	a	range	of	

mean	expression	values.	We	designed	primers	using	transcript	sequence	data	from	the	

mapping	experiment,	and	Primer	3	software	(Version	0.4.0)	to	identify	150-350	bp	

fragments	that	span	introns	(Appendix	2).	We	converted	RNA	to	cDNA	using	iScript	cDNA	

synthesis	kit	following	manufacturer’s	instructions	(Bio-Rad,	Hercules,	CA).	We	performed	

RT-qPCR	for	three	technical	replicates	per	cDNA/primer	combination	on	a	StepOnePlus	

Real-Time	PCR	System	(Life	Technologies,	Grand	Island,	New	York,	USA)	using	the	
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protocols	described	in	Scoville	et	al.	(2011),	with	the	exception	of	substituting	Fast	SYBR	

Green	Master	Mix	for	the	standard	SYBR	Green	Master	Mix	(Life	Technologies).	We	

normalized	candidate	gene	expression	against	the	housekeeping	gene	EF1a	(SCOVILLE	et	al.	

2011).	

	

Clustering	by	Gene	Expression	

We	normalized	and	variance	stabilized	gene	expression	values	for	all	919	genes	found	to	be	

differentially	expressed	through	our	consensus	methodology	based	on	the	mean	sample	

expression	as	implemented	in	DESeq2	(ANDERS	and	HUBER	2010).	This	was	done	in	order	to	

prevent	clustering	due	to	similar	mean	expression	levels;	rather	we	were	interested	in	

clustering	based	on	direction	and	magnitude	of	differential	expression.	From	the	919	

(differentially	expressed	genes)	x	12	(individuals)	data	matrix,	we	generated	a	919	x	919	

pairwise	dissimilarity	matrix	(1-r2).	Because	we	used	(1-r2)	as	the	dissimilarity	metric,	

genes	that	have	high	positive	or	negative	correlations	across	the	twelve	individuals,	have	

near	zero	dissimilarity	scores.	This	allowed	clustering	of	transcriptional	repressors	with	a	

gene,	or	group	of	genes,	negatively	regulated	by	that	factor.		

We	implemented	a	dynamic	tree	cutting	approach	and	a	comparison	of	cluster	stability	to	

first	identify	an	appropriate	number	of	gene	clusters	based	on	dissimilarity	metrics	

(LANGFELDER	et	al.	2008;	BROCK	et	al.	2011).	We	then	implemented	a	self-organizing	map	

(SOM)	based	clustering	technique	using	the	R	package	kohonen	(hexagonal	nodes,	8x6	

matrix)(WEHRENS	and	BUYDENS	2007).	This	generated	a	topologically	complex	mapping	of	

nodes,	where	individual	nodes	contain	the	least	variation,	and	the	distance	between	nodes	

is	a	function	of	the	dissimilarity	between	nodes.	Similar	nodes	were	further	grouped	using	
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a	hierarchical	clustering	method.	Based	on	a	visual	analysis	of	the	U-matrix	(inter-node	

distance	matrix)	of	our	8x6	self-organizing	map,	as	well	as	post	hoc	cluster	analysis,	we	

grouped	the	48	resultant	nodes	into	four	clusters,	excluding	nodes	with	high	levels	of	

variation.	Finally,	we	performed	a	Fischer’s	Exact	test	of	GO	terms	for	each	of	these	four	

clusters	to	determine	if	they	contained	significantly	different	abundances	of	GO	terms.	

	

RESULTS	

Increased	Trichome	Production	in	Progeny	of	Damaged	Parents	

Progeny	of	leaf-damaged	M.	guttatus	RIL94	plants	develop	leaves	with	22.9	percent	higher	

trichome	density	compared	to	control	progeny	(p=0.025,	df=126,	Appendix	1a).	Repeating	

this	experiment	using	eight	different	parent	plants	and	their	progeny,	we	found	a	44	

percent	increase	in	trichome	density	in	progeny	of	damaged	compared	to	control	plants	

(F2=13.9952,	p=0.0003,	df=150),	with	no	significant	effect	of	parent	of	origin	(F2=0.8650,	

p=0.523,	df=150)(Appendix	1b).	This	confirms	transgenerational	phenotypic	plasticity	of	

trichome	density	in	RIL94	as	previously	demonstrated	in	several	experiments	(HOLESKI	

2007;	HOLESKI	et	al.	2010;	SCOVILLE	et	al.	2011).	

	

Read	Mapping	

Between	87	and	115	million	100	bp	Illumina	reads	were	generated	from	each	of	the	12	

seedling	libraries	(1.19	billion	reads	total).	Of	these,	between	79%	and	86%	of	reads	per	

individual	mapped	to	the	reference	genome	(Appendix	3),	resulting	in	a	total	of	988	million	

mapped	reads.	As	paired-end	reads	come	from	a	single	RNA	transcript,	each	mapped	pair	

of	reads	contributed	a	single	unit	to	the	expression	value	of	a	given	gene.	Additionally,	we	
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discovered	that	RIL	94	has	a	single	region	of	heterozygosity,	3.75	megabases	in	length	at	

the	end	of	chromosome	14.	We	were	able	to	determine	the	genotype	across	this	region	for	

all	12	individuals	(Appendix	4),	and	confirmed	that	genotype	in	this	region	of	

heterozygosity	does	not	correspond	with	observed	differential	expression	or	clustering	

patterns.	

	

Differential	transcript	abundance	in	Response	to	Parental	Leaf	Damage	

Of	the	20,748	genes	with	greater	than	60	reads	mapped,	10.5%	(2,186)	were	found	to	be	

differentially	expressed	with	a	FDR	of	<0.1	in	at	least	one	of	the	five	tests.	RT-qPCR	for	a	

subset	of	transcripts	confirmed	RNA-seq	based	quantification	(Appendix	5)	These	five	tests	

found	between	164	(NOISeq)	and	1,737	(SAMSeq)	genes	to	be	differentially	expressed	at	

this	stringency,	with	a	moderate	level	of	overlap	(Figure	1.2,	Appendix	6).	We	found	919	

genes	differentially	expressed	in	three	or	more	of	the	five	tests,	corresponding	to	4.4%	of	

the	transcriptome	(Figure	1.2).		Only	EdgeR	and	limma	allow	inclusion	of	family	structure	

for	assessment	of	differential	gene	expression.	Using	parent	plant	as	an	additional	factor	

we	found	1,276	genes	to	be	differentially	expressed	using	EdgeR,	and	483	to	be	

differentially	expressed	using	limma	(Appendix	7a	and	7b).	We	observed	extensive	overlap	

between	the	sets	of	genes	found	differentially	expressed	with	parent	plant	as	an	additional	

factor,	and	the	set	of	genes	found	differentially	expressed	using	our	consensus	

methodology	(Appendix	7c).	Focusing	on	the	919	genes	found	to	be	differentially	

expressed	by	our	consensus	method,	mean	expression	of	the	differentially	expressed	genes	

was	1,278	reads	per	individual,	but	range	from	as	few	as	6	to	as	many	as	200,000	reads	per	

individual,	representing	a	full	range	of	gene	expression	levels.		464	genes	were	up-
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regulated	in	response	to	parental	damage,	while	455	were	down-regulated	(Figure	1.3,	

Table	1.1).	Up-regulated	genes	had	an	average	of	2.61	fold	increase	in	expression	in	the	

progeny	of	damaged	plants,	while	down-regulated	genes	had	an	average	of	1.71	fold	

decrease	in	expression.		

	

Confirmation	of	MgMYBML8	Differential	Expression	

	 We	confirmed	the	differential	expression	of	the	transcription	factor	MgMYBML8	

(Transcript	ID	1491824),	previously	identified	by	Scoville	et	al.	(2011)	as	differentially	

expressed	in	response	to	parental	leaf	damage	in	M.	guttatus.	This	gene	was	only	found	to	

be	significantly	differentially	expressed	with	a	genome	wide	FDR	using	the	SAMSeq	

pipeline,	however	its	single	test	p-value	was	<0.05	in	both	DESeq2	(p-value	=	0.01)	and	

EdgeR	(p-value	=	0.02).	Progeny	of	control	plants	had	an	average	of	23.4%	higher	

expression	(normalized	average	of	1,439	reads	in	the	control	group,	and	1,166	reads	in	the	

damage	group)(Appendix	1c),	and	the	five	individuals	with	highest	expression	of	

MgMYBML8	were	all	from	the	control	group.		

	

Gene	Ontology	Analyses	Indicate	Transcript	Function	

Of	the	24,919	genes	expressed	in	seedlings	from	the	experimental	generation,	19,573	

(78.5%)	were	successfully	BLASTed	(CONESA	et	al.	2005)	to	genes	with	significant	sequence	

similarity	(E-value	<	1x10-3)	and	annotation	for	at	least	one	Gene	Ontology	ID	(GOID).	707	

of	919	(76.9%)	differentially	expressed	genes	were	annotated	and	assigned	GO	terms.	We	

identified	31	GOIDs	as	significantly	enriched	(9)	or	depleted	(22)	in	the	set	of	differentially	

expressed	transcripts	relative	to	the	seedling	transcriptome	(FDR	<	0.1;	Appendix	8,	and	
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see	Table	1.2	for	a	subset	of	GO	terms	most	relevant	to	the	discussion).	The	22	depleted	GO	

terms	represent	gene	ontology	categories	that	have	a	lower	number	of	differentially	

expressed	genes	than	would	be	expected	by	chance,	while	the	9	enriched	categories	show	

the	opposite	trend	(Appendix	8).	Three	GOIDs	were	enriched	in	down-regulated	relative	to	

up-regulated	transcripts	(cell	periphery,	cell	wall,	and	carbohydrate	metabolic	process;	

Table	1.3),	and	1	GOID	was	enriched	in	up-regulated	relative	to	down-regulated	transcripts	

(response	to	abiotic	stimulus;	Table	1.3).			

	

KEGG	Pathway	Analysis	Identifies	Pathways	Regulated	By	Parental	Wounding	

	 A	manual	survey	of	KEGG	metabolic	pathways	identified	91	pathways	containing	

enzymes	that	were	differentially	expressed	in	response	to	parental	damage.	We	focused	on	

five	of	these	pathways	to	generate	new	predictions	regarding	the	enzymatic	basis	of	other	

potential	functional	changes	in	the	progeny	of	damaged	plants.	Three	of	these	pathways	

are	involved	in	the	production	of	plant	hormones	(ethylene,	jasmonic	acid,	and	abscibic	

acid),	previously	linked	to	plant	wound	response.	Numerous	enzymes	in	the	

phenylpropanoid	pathways	were	differentially	expressed	providing	evidence	that	chemical	

defenses	are	also	differentially	regulated	in	the	progeny	of	damaged	plants.	Finally,	we	

found	several	differentially	expressed	genes	in	pathways	leading	to	the	production	and	

degradation	of	lignin,	xyloglucan,	and	pectin	(see	discussion	for	specific	genes	found	

differentially	expressed	in	these	pathways).	

	

Clustering	By	Gene	Expression	Generates	Four	Putative	Co-Regulatory	Groups	
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Through	clustering	analysis	we	grouped	754	of	919	differentially	expressed	genes	into	four	

distinct	clusters.	These	clusters	ranged	in	size	from	88	to	288	genes.		An	analysis	of	

expression	heatmaps	for	genes	in	these	clusters	confirmed	that	these	four	clusters	contain	

groups	of	differentially	expressed	genes	with	highly	similar	expression	patterns	(Figure	

1.4).	We	found	that	these	four	clusters	had	distinct	GO	term	distributions,	and	all	four	were	

significantly	enriched	(p<0.05)	for	at	least	one	GO	term	relative	to	the	other	differentially	

expressed	genes	(Table	1.3	and	Figure	1.4).		

	

DISCUSSION	

Differential	Gene	Expression	in	Response	to	Parental	Leaf	Damage	

Transgenerational	phenotypic	plasticity	in	plants	has	been	documented	in	response	to	a	

number	of	environmental	conditions	(AGRAWAL	et	al.	1999;	BOYKO	et	al.	2010;	HOLESKI	et	al.	

2012;	JABLONKA	2012;	RASMANN	et	al.	2012).	However,	the	pattern	and	magnitude	of	

differential	gene	expression	associated	with	altered	phenotypes	had	not	previously	been	

explored.	Using	high	throughput	sequencing	we	identify	919	genes	(ca.	4%	of	the	seedling	

transcriptome)	to	be	differentially	expressed	in	the	progeny	of	leaf-damaged	M.	guttatus	

plants	(Figure	1.3).	By	only	choosing	genes	that	were	found	to	be	differentially	expressed	

(FDR<0.1)	in	three	or	more	of	five	tests,	we	minimize	the	biases	of	any	one	computational	

approach	in	identifying	differentially	expressed	genes,	although	the	conservative	nature	of	

this	procedure	may	underestimate	the	number	of	affected	genes.	

	

Transcriptome	responses	to	altered	environmental	conditions	experienced	within	a	plant’s	

lifetime	have	been	well	known	for	over	a	decade	(SACHS	and	HO	1986;	TSANG	et	al.	1991;	
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SEKI	et	al.	2001).	Recent	theoretical	studies	have	pointed	out	numerous	scenarios	for	which	

such	within-generation	plasticity	would	prove	advantageous	if	transmitted	across	

generations	(HERMAN	et	al.	2013b),	such	as	when	environmental	heterogeneity	is	low,	or	

there	is	a	lag	time	between	environmental	cue	and	the	appropriate	response.	We	now	

provide	support	for	the	biological	capacity	of	these	transgenerartional	responses;	

specifically	we	demonstrate	that	environmental	conditions	affect	gene	expression	across	

generations.	Through	an	analysis	of	gene	functional	categories	we	are	able	to	reject	the	null	

hypothesis	that	differentially	expressed	genes	in	the	progeny	of	leaf-damaged	parents	

reflects	a	random	subset	of	the	seedling	transcriptome.	Instead,	we	find	enrichment	of	

functional	categories	associated	with	cell	wall	production	and	modification	that	may	

underlie	the	observed	transgenerational	plasticity	in	trichome	density.	Additionally,	we	

find	enrichment	for	categories	of	biological	function	that	may	regulate	an	inherited	

response	to	stress	(plant	hormones),	and	alter	phenotypes	that	provide	benefits	under	

stressful	conditions	(secondary	metabolites).	

	

	Environmental	Response	Pathways	are	Regulated	by	Parental	Wounding	

	Numerous	stimulus	response	genes	are	differentially	expressed	as	a	result	of	parental	

wounding	(Table	1.2,	3,	Appendix	8,	Figure	1.3).	Both	up-	and	down-regulated	differentially	

expressed	genes	are	enriched	for	the	“response	to	stimulus”	GOID.	However,	more	

transcripts	belong	to	the	“response	to	abiotic	stimulus”	than	the	“response	to	biotic	

stimulus”	GOID	(Table	1.2),	and	response	to	abiotic	stimulus	transcripts	are	primarily	up-

regulated	(Table	1.3).	Though	the	leaf-damage	treatment	is	meant	to	mimic	herbivore	

damage,	studies	in	Arabidopsis	have	noted	that	purely	mechanical	damage	elicits	numerous	
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abiotic	response	pathways	(KORTH	and	DIXON	1997).	In	Arabidopsis,	it	has	been	shown	that	

salivary	compounds	and	insect	chitin	elicit	additional	herbivore	responses	(WALLING	2000).	

Our	results	suggest	that	Mimulus	also	responds	to	mechanical	damage	through	altered	

regulation	of	more	pathways	associated	with	abiotic	rather	than	biotic	stress.	The	signals	

transmitted	in	response	to	parent	leaf-damage,	and	affecting	gene	expression	in	stress-

response	pathways,	are	likely,	in	turn,	to	alter	the	regulation	of	trichome	production	(in	

part	through	cell	wall	biosynthesis)	and	secondary	defensive	metabolites.		

Plant	hormones	provide	upstream	regulation	of	many	of	the	major	stress	response	

pathways,	making	the	differential	expression	of	genes	involved	in	hormone	metabolism	

particularly	interesting.	Ethylene,	abscisic	acid,	and	jasmonic	acid	are	known	to	function	in	

a	diverse	range	of	environmental	responses,	interact	and	co-regulate	one	another,	and	all	

appear	to	be	differentially	regulated	in	the	progeny	of	mechanically	damaged	plants	

(ANDERSON	et	al.	2004;	BRUCE	et	al.	2007).	Our	gene	expression	results	predict	that	in	the	

progeny	of	damaged	parents,	ethylene	levels	are	elevated,	while	abscisic	acid	and	jasmonic	

acid	levels	are	reduced.	The	rate	limiting	enzyme	in	ethylene	production,	1-

aminocyclopropane-1-carboxylate	synthase	(ACC	synthase,	gene	ID	1308039)(YU	et	al.	

1979)	is	up-regulated	in	the	progeny	of	damaged	plants.	Additionally,	three	enzymes	

involved	in	the	methionine	salvage	pathway	(gene	IDs	1358627,	1377394,	1478307),	

which	recycle	methionine	derivatives	and	convert	them	back	into	a	precursor	of	ethylene	

(BLEECKER	and	KENDE	2000),	are	up-regulated.	These	results	suggest	elevated	ethylene	

levels	in	the	progeny	of	damaged	compared	to	control	plants.	Two	enzymes	involved	in	

abscisic	acid	metabolism	are	differentially	expressed	in	progeny	of	damaged	plants.	A	rate-

limiting	enzyme	in	abscisic	acid	synthesis,	xanthoxin	dehydrogenase	(GONZÁLEZ-GUZMÁN	et	
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al.	2002),	is	down-regulated	(gene	ID	1382403),	and	the	pivotal	enzyme	in	abscisic	acid	

degradation,	abscisic	acid	8'-hydroxylase	(SAITO	et	al.	2004),	is	up-regulated	(gene	ID	

1418051).	Taken	together,	these	results	suggest	reduced	abscisic	acid	production	in	the	

progeny	of	damaged	compared	to	control	plants.	Finally,	three	enzymes	involved	in	

jasmonic	acid	synthesis	are	down-regulated	in	the	progeny	of	damaged	plants,	two	copies	

of	a	gene	that	codes	for	13S-lipoxygenase	(gene	IDs	1429895	and	1477921),	and	one	copy	

of	phospholipase	A2	(gene	ID	1389850).	These	enzymes	are	rate	limiting	components	in	

the	synthesis	of	jasmonic	acid	(YAN	et	al.	2013),	suggesting	that	jasmonic	acid	levels	are	

also	reduced	in	the	progeny	of	damaged	compared	to	control	plants.	While	jasmonic	acid	is	

traditionally	associated	with	biotic	stress	responses	and	trichome	production,	unpublished	

results	from	both	our	group	and	Chris	Ivey	(pers.	comm.)	suggest	that	jasmonic	acid	(or	at	

least	its	methylated	form,	methyl	jasmonate)	may	be	a	negative	regulator	of	trichomes	in	

M.	guttatus.	The	finding	that	not	just	one,	but	all	three	of	these	hormones	are	differentially	

regulated	in	the	progeny	of	damaged	plants	supports	the	hypothesis	that	this	

transgenerational	response	is	mediated,	at	least	in	part,	through	the	hormonal	regulation	

of	stress	response	pathways.		

	

Biological	Functions	Associated	With	Altered	Trichome	Production	

Trichome	development	requires	cell	wall	remodeling	to	allow	epidermal	outgrowth	

(HÜLSKAMP	et	al.	1994;	APPLEQUIST	et	al.	2001).	Therefore,	differentially	expressed	genes	

that	function	in	cell	wall	establishment	or	modification	are	likely	to	affect	trichome	density.	

We	found	the	“cell	wall”	GOID	to	be	significant	enriched	(2.09	fold)	within	the	set	of	

differentially	expressed	genes.	Of	61	differentially	expressed	genes	with	the	cell	wall	GOID,	
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45	were	down-regulated	in	response	to	parental	damage	(Table	1.3).	Many	of	these	down-

regulated	genes	appear	to	function	in	cellular	shape	modification,	for	example,	xyloglucan	

endotransglucosylase	hydolases	(XEHs),	and	enzymes	involved	in	reshaping	cell	wall	

components	(EKLÖF	and	BRUMER	2010).	The	down-regulation	of	five	XEHs,	associated	with	

increased	trichome	production,	suggests	that	these	XEHs	may	repress	trichome	formation.			

KEGG	map	analysis	(KANEHISA	et	al.	2012)	suggests	that	carbohydrate	metabolism	genes,	

differentially	expressed	in	the	progeny	of	damaged	plants,	likely	alter	cellulose,	xyloglucan,	

and	pectin	biosynthesis.	Plant	cell	walls	are	primarily	composed	of	cellulose	fibers	

embedded	in	a	matrix	of	hemicellulose	(xyloglucan)	and	pectin	polysaccharides	(COSGROVE	

1997).	The	pattern	of	differential	gene	expression	is	consistent	with	highly	modified	

production	of	all	three	of	these	cell	wall	compounds;	however,	due	to	the	vast	number	of	

both	up-	and	down-regulated	genes,	it	is	difficult	to	predict	how	the	abundances	of	these	

cell	wall	components	would	change	in	the	progeny	of	damaged	plants.	Altered	cell	wall	

carbohydrate	composition	could	be	related	to	increased	trichome	production	or	a	distinct	

transgenerational	response	modifying	the	flexibility	and/or	strength	of	progeny	plants.	

Down	regulation	of	phenylcoumaran	benzylic	ether	reductase	(gene	ID	1419276)	and	

lactoperoxidase	(MgLP1;	gene	ID	156083),	which	both	function	in	lignin	production,	the	

most	rigid	cell	wall	component,	provides	evidence	that	altered	cell	wall	content	may	affect	

plant	physiology	in	more	ways	than	just	modifying	trichome	density	(GANG	et	al.	1999)	

(Figure	1.5).		

	

Biological	Functions	Associated	with	Secondary	Metabolite	Synthesis	
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While	trichomes	(and	the	cell	wall	in	general)	provide	a	mechanical	barrier	to	insect	

herbivory,	chemical	deterrents	provide	additional	defense	(WINK	1988).	The	GOID	

associated	with	secondary	metabolite	synthesis	pathways	is	not	enriched	in	our	whole	set	

of	differentially	expressed	genes,	but	is	enriched	2.39	fold	in	cluster	1	of	our	differentially	

expressed	genes	(Table	1.3	and	Figure	1.4).	Using	KEGG	maps	to	guide	a	metabolic	pathway	

analysis,	we	identify	two	genes	coding	for	4-coumarate-CoA-ligase	(MgCou1	and	MgCou2;	

gene	IDs	1434953	and	1307066)	as	differentially	expressed	in	the	offspring	of	damaged	

plants,	and	their	cumulative	expression	is	higher	in	the	progeny	of	damaged	individuals	

(Figure	1.5).	This	gene	produces	Coumaroyl-CoA,	the	precursor	of	plant	phenylpropanoids.	

Additionally,	we	found	two	of	the	pathways	involved	in	the	processing	of	Coumaroyl-CoA	

to	be	down-regulated,	and	one	to	be	up-regulated	in	the	progeny	of	damaged	plants.	The	

down-regulated	pathways	lead	to	the	production	of	lignins	(discussed	above)	and	

flavonols,	while	the	continued	processing	of	Coumaroyl-CoA	into	Anthocyanins,	

Flavanones,	and	Flavones	appears	to	be	up-regulated	(Figure	1.5).	Through	the	up-

regulation	of	enzymes	involved	in	phenylpropanoid	production	and	the	differential	

expression	of	specific	down-stream	pathways,	the	progeny	of	damaged	plants	may	modify	

their	allocation	of	resources	to	secondary	metabolite	production	in	a	way	that	increases	

their	fitness	in	environments	similar	to	that	experienced	by	their	parents	(TREUTTER	2005).		

	

Differential	Expression	of	Heat	Shock	Proteins	

Genes	coding	for	heat	shock	proteins	(HSPs)	are	differentially	expressed	in	response	to	

parental	damage.	Twenty	seven	of	28	are	significant	up-regulated,	and	1	of	28	is	

significantly	down-regulated	(Appendix	9).	These	enzymes	cannot	be	linked	to	specific	
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pathways,	but	their	function	in	protein	mobility	and	folding	is	well	understood	(LINDQUIST	

and	CRAIG	1988).	HSPs	have	previously	been	found	to	be	up-regulated	in	responses	to	many	

plant	stresses	(SWINDELL	et	al.	2007),	but	this	is	the	first	time	in	which	this	response	has	

been	shown	transgenerationally	in	plants.		

	

Four	Clusters	of	Differentially	Expressed	Genes	

	 Our	clustering	results	provide	evidence	that	the	observed	transgenerational	

plasticity	in	gene	expression	is	due	to	transmission	of	a	few	signals	derived	from	parental	

leaf	damage	that	regulate	the	expression	of	gene	clusters,	and	not	unique	transgenerational	

inheritance	at	each	locus.	The	finding	that	each	of	the	four	clusters	contains	different	types	

of	genes	(Figure	1.4,	Table	1.3),	as	identified	by	GOID	term	distributions,	supports	the	

hypothesis	that	these	gene	clusters	reflect	distinct	groups	of	genes	regulated	by	a	common	

signal.	Individual	plants	appear	capable	of	inheriting	a	wound	response	signal	for	some,	but	

not	all	clusters	of	differentially	expressed	genes.	For	example,	individual	D2A	(Figure	1.4)	

shows	a	strong	gene	expression	damage	response	for	clusters	1,	a	moderate	response	for	

cluster	2,	but	no	response	for	clusters	3	and	4.	It	may	be	that	certain	parent	plants	only	

produce	a	subset	of	the	transgenerational	wound	response	signals.	However,	this	appears	

unlikely,	as	even	siblings	often	show	different	gene	expression	patterns.	For	example,	

individual	D3a	shows	a	clear	gene	expression	damage	response	for	cluster	2,	while	its	

sibling,	D3b,	does	not	exhibit	this	response.	Thus,	it	appears	that	even	selfed	siblings	from	

within	a	recombinant	inbred	line	can	inherit	different	transgenerational	signals.	

Alternatively,	a	single	transgenerational	signal	modifying	gene	expression	in	four	distinct	

pathways	with	different	dynamics	could	lead	to	the	observed	clustering	results.	Additional	
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analyses	aimed	at	determining	the	transmitted	signal	(e.g.,	altered	DNA	methylation	states	

and/or	differentially	transmitted	small	RNAs)	will	be	necessary	to	distinguish	between	

these	two	possibilities.	While	there	appear	to	be	multiple	corgeulatory	gene	groups	

differentially	regulated	in	response	to	parent	environment,	offspring	may	display	all,	or	

only	a	subset,	of	the	possible	signals.	What	these	signals	are	and	why	they	are	stochastically	

expressed	in	the	progeny	generation	remains	unknown.	It	is	possible	that	mosaic	patterns	

of	differential	expression	correspond	to	mosaic	epigenetic	inheritance,	as	suggested	by	

(JABLONKA	and	RAZ	2009).	

	

Identifying	the	Epigenetic	Signal	Transmitted	to	Progeny	

Recent	findings	suggest	that	differential	DNA	methylation	and	small	RNA	transcription	of	

transposable	elements	and	coding	genes	can	be	directed	by	environmental	conditions	and	

can	lead	to	differential	gene	expression	in	cis	(ITO	et	al.	2011).	Additionally,	histone	

acetylation	and	methylation	at	specific	loci	can	be	transgenerationally	responsive	to	

parental	stress	(LANG-MLADEK	et	al.	2010).	It	is	unclear	how	DNA	methylation,	histone	

modifications,	and	small	RNAs	propagate	environmental	signals	transgenerationally,	but	it	

is	clear	that	these	three	epigenetic	mechanisms	interact	to	perpetuate	these	signals	(MCCUE	

et	al.	2012;	LAW	et	al.	2013b).	In	Arabidopsis,	the	genes	encoding	numerous	chromatin-

remodeling	proteins	(HKMTs)	have	been	found	to	be	hypermethylated,	and	in	turn	silenced	

in	the	offspring	of	salt	stressed	individuals,	leading	to	DNA	hypomethylation	elsewhere	in	

the	genome	(BILICHAK	et	al.	2012).	One	possibility	is	that	histone	modifications	in	response	

to	stress	lead	to	the	production	of	locus-specific	small	RNAs	that	invade	the	germline	and	
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reprogram	stress	induced	histone	and/or	DNA	methylation	(MOLNAR	et	al.	2010;	CALARCO	et	

al.	2012).	

Our	findings	support	the	hypothesis	that	wound	response	signals	produced	in	parent	

plants	can	affect	the	physiology	and	development	of	offspring	via	altered	gene	regulation	in	

the	absence	of	inductive	signals	experienced	by	offspring.	If	these	parent-derived	signals	

are	epigenetic	in	nature,	they	should	be	detectable	as	differential	small	RNA	profiles	and/or	

DNA	methylation	patterns	in	progeny	of	damaged	compared	to	control	plants.	The	finding	

that	numerous	plant	hormone	pathways	show	differential	expression	in	our	progeny	plants	

presents	an	alternative	hypothesis;	hormone	loading	into	seeds	may	cause	gene	expression	

and	phenotypic	plasticity	in	progeny.	Determining	whether	the	signal	transmitted	from	

parent	to	offspring	is	hormonal,	epigenetic,	or	belongs	to	an	as	yet	unidentified	mechanism	

is	a	vital	next	step	for	advancing	our	understanding	of	transgenerational	phenotypic	

plasticity.		

	

Conclusions	

This	study	illustrates	how	RNA-seq	data	can	be	used	to	both	identify	candidate	genes	

responsible	for	phenotypes	of	interest,	as	well	as	other	genes,	developmental	pathways	and	

phenotypes	responsive	to	a	stimulus	of	interest.	We	confirm	results	from	a	previous	

candidate	gene	study	(Scoville	et	al.	2011)	–	MgMYBML8	is	down-regulated	in	response	to	

parental	leaf	damage.		However,	this	genome-wide	survey	finds	differential	expression	of	

over	900	additional	genes	and	it	is	yet	to	be	determined	the	extent	to	which	MgMYBML8	

regulates,	or	is	regulated	by,	genes	in	this	larger	set.	Many	genes	in	this	larger	set	appear	to	

be	co-regulated	and	involved	in	similar	metabolic	pathways;	often	in	ways	that	allow	us	to	
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generate	testable	hypotheses	of	how	evolutionarily	significant	phenotypes	are	regulated	by	

parental	leaf	damage.	Future	studies	will	aim	to	determine	whether	these	phenotypes	are	

responsive	to	parental	leaf	damage	in	the	way	predicted	by	this	transcriptome	analysis.		

Annual	plants	may	be	incapable	of	transmitting	information	to	their	progeny	through	cis-

temporal	mechanisms	(such	as	language,	or	airborne/water-soluble	chemical	cues)(Dudley	

&	File,	2007),	but	it	appears	that	they	have	evolved	a	mechanism(s)	for	disseminating	

environmental	information	from	one	generation	to	the	next.	The	diversity	of	responsive	

genes	and	the	scale	of	differential	expression	in	response	to	a	single	environmental	

variable	is	exciting,	but	future	studies	in	other	species,	in	the	field,	and	in	response	to	other	

environmental	conditions	will	be	necessary	to	gauge	the	impact	that	this	system	of	

inheritance	has	on	gene	regulation	and	evolution	(RICHARDS	et	al.	2012).	Finally,	the	signals	

which	cause	transgenerational	environmentally	induced	differential	gene	expression	still	

must	be	identified.	While	much	work	has	been	done	showing	the	importance	of	various	

epigenetic	factors	in	transgenerational	inheritance,	a	study	linking	parental	epigenetic	

modification,	offspring	epigenome,	offspring	gene	expression,	and	altered	offspring	

phenotype	and	fitness	in	the	same	system	will	be	necessary	to	produce	a	more	complete	

model	of	transgenerational	phenotypic	plasticity.		
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Table	1.1.	Expression	patterns	and	calculated	p-values	of	the	top	fifteen	up-regulated,	and	
down-regulated	annotated	transcripts	in	response	to	parental	damage.	

	
	

Gene	Description	 Damaged	
parent1	

Control	
parent1	 log2	FC	 EdgeR	 DESeq2	

Up-regulated	transcripts	

dnaj	protein		 2,881	 1,292	 1.10	
4.48E-09	 7.88E-11	

polygalacturonase		 217	 36	 2.47	
5.22E-14	 3.25E-10	

heat	stress	transcription	factor	
6b	 602	 123	 2.35	

5.01E-17	 6.40E-10	

heat	shock	protein	 1,840	 491	 2.02	
2.33E-10	 2.89E-09	

bri1	kinase	inhibitor	1	 419	 174	 1.21	
4.19E-10	 6.57E-09	

p-hydroxybenzoic	acid	efflux	
pump	subunit	aaeb	 152	 21	 2.80	

3.52E-18	 3.53E-08	

glycerol-3-phosphate	
transporter		 1,978	 419	 2.11	

2.49E-14	 1.17E-07	

hydroxymethylglutaryl-lyase	 1,041	 293	 1.83	
2.79E-13	 1.17E-07	

udp-glycosyltransferase		 732	 403	 0.79	
4.83E-07	 4.81E-07	

outer	arm	dynein	light	chain	1		 428	 183	 1.21	
9.14E-06	 7.47E-07	

dnaj	subfamily	b		 298	 143	 0.95	
4.47E-09	 2.29E-06	

	l-type	lectin-domain	containing	
receptor	kinase	 2,053	 987	 0.99	

6.48E-13	 2.34E-06	

chloroplast	movement	under	
blue	light	1	 955	 518	 0.75	

3.78E-08	 3.06E-06	

acyl-	n-acyltransferases	 280	 158	 0.73	
1.28E-05	 4.39E-06	

heat	shock	protein	70	 34,114	 21,777	 0.55	
3.57E-07	 5.85E-06	

Down-regulated	transcripts	 	

pollen	ole-e-1		 2,165	 2,684	 -0.43	 1.55E-10	 4.85E-07	
protochlorophyllide	
chloroplastic	 9,099	 21,057	 -1.43	 1.20E-09	 2.68E-06	
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cold	acclimation	protein	
cor413-pm1	 2,989	 5,200	 -0.96	 4.66E-09	 8.10E-06	

metal-nicotianamine	
transporter	ysl7	 564	 848	 -0.71	 1.31E-08	 1.58E-05	

sodium	calcium	exchanger	
protein	 3,592	 5,063	 -0.64	 2.60E-08	 2.49E-05	

phosphoenolpyruvate	
carboxykinase	 8	 55	 -2.71	 6.61E-08	 5.58E-05	

chaperone	protein	dnaj	20	 170	 697	 -2.28	 2.71E-07	 0.00016	

ralf	34	 573	 854	 -0.68	 2.80E-07	 0.00016	

cytosolic	sulfotransferase	12	 868	 1,453	 -0.98	 3.12E-07	 0.00018	

abc	transporter	c	5	 786	 1,428	 -0.97	 3.90E-07	 0.00022	

remorin	protein	 1,517	 2,312	 -0.74	 7.94E-07	 0.00039	

early	nodulin	1	 295	 415	 -0.67	 9.55E-07	 0.00045	

protein	kinase	chloroplastic	 390	 495	 -0.46	 1.34E-06	 0.00058	

lrr	receptor	serine	threonine-
protein	kinase		 451	 664	 -0.70	 1.53E-06	 0.00064	

stem-specific	protein	tsjt1	 1,157	 1,867	 -0.88	 1.75E-06	 0.00071	
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Table	1.2.	Subset	of	GO	terms	found	at	significantly	elevated	frequencies	in	the	set	of	
differentially	expressed	(DE)	genes	compared	to	transcriptome-wide	frequencies.	See	
Appendix	8	for	the	full	set	of	31	enriched	GO	terms.	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

***p	<	0.005	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

GO	term	 %	transcriptome	with	
term	 %	DE	genes	with	term	

cell	periphery	 14.3	 22.7***	
membrane	 25.7	 35.4***	
response	to	
stimulus	 23.2	 32.3***	
response	to	abiotic	
stimulus	 9.6	 15.9***	
cell	wall	 3.2	 6.7***	
response	to	stress	 15.1	 21.5***	
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Table	1.3.	GO	terms	found	at	significantly	elevated	frequencies	in	the	set	of	significantly	
up-regulated	DE	genes,	the	set	of	significantly	down-regulated	DE	genes,	and	in	each	of	the	
gene	clusters	(Figure	1.4).	Each	test	for	significant	enrichment	of	a	GO	term	is	for	the	
specific	gene	group	compared	to	all	DE	genes	not	in	that	group.	
	
	
	

GO	term	

%	up-
regulate
d	genes	
with	
term	

%	down-
regulate
d	genes	
with	
term	

%	
cluster	1	
genes	
with	
term	

%	
cluster	2	
genes	
with	
term	

%	
cluster	3	
genes	
with	
term	

%	
cluster	4	
genes	
with	
term	

cell	periphery	 18.6	 26.5***	 18.1	 25.4	 18.2	 34.2***	
membrane	 33.3	 36.3	 33.0	 38.8**	 28.6	 42.5	
response	to	
stimulus	 31.6	 31.7	 31.2	 32.1	 46.8***	 34.2	
response	to	
abiotic	
stimulus	 18.6***	 12.8	 17.2*	 12.5	 32.5***	 12.3	
cell	wall	 3.5	 10.2***	 5.1	 6.3	 6.5	 16.4***	
response	to	
stress	 22.6	 19.5	 20.0	 18.3	 40.3***	 23.3	
carbohydrate	
metabolic	
process	 7.0	 15.4**	 14.0	 7.6	 10.4	 16.4	
secondary	
metabolic	
process	 4.9	 5.2	 9.8*	 2.2	 3.9	 2.7	
*p	<0.05,	**0.005	<	p	<	0.05,	***p	<	0.005	
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Figure	1.1.	A	model	for	environmentally	induced	transgenerational	phenotypic	plasticity	
in	M.	guttatus.	a)	Leaf	clipping	to	parent	plants	simulates	mechanical	damage	effects	of	
insect	herbivory.	b)	Signals	resulting	from	parent	environment	(damage/no	damage)	are	
transmitted	to	progeny.	c)	Progeny	exhibit	phenotypic	plasticity	in	trichome	production	in	
response	to	parent	environment	(damage/no	damage).	d)	Transgenerationally	inherited	
signals	are	translated	into	plastic	phenotypes	through	differential	gene	expression	in	
progeny.	M.	guttatus	image	available	under	GNU	free	documentation	license	1.3.	Modified	
from	Flora	von	Deutschland	(THOMÉ	1885).	
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Figure	1.2.	Mean	and	standard	deviation	(in	parentheses)	for	additive	and	total	genetic	
variance	calculated	with	and	without	bias-correction	(above	and	below	the	line,	
respectively),	as	well	as	with	and	without	epistasis	for	both	of	the	allele	frequency	
distributions.		
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Figure	1.3.	Heat	map	of	919	differentially	expressed	genes	by	treatment	category.	
Individuals	are	coded	as	C	or	D	=	control	group	or	leaf	damage	group,	1,	2	or	3	=	family	line,	
and	a	or	b	=	one	of	two	siblings	included	per	family	line.	Differentially	expressed	genes	
identified	to	GOIDs	cell	membrane,	abiotic	stimulus,	secondary	metabolic	process,	and	cell	
wall	are	indicated	by	color	codes	along	the	left-side	of	the	heat	map.	
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Figure	1.4.	Heat	maps	of	differentially	expressed	genes	by	cluster.	Color	keys	for	both	
expression	level	(red	to	green)	and	GOID	(green,	yellow,	red,	blue	in	left	hand	columns)	are	
as	in	Figure	1.3.		Asterisks	indicate	GOIDs	significantly	enriched	in	a	given	cluster	relative	
to	the	full	set	of	differentially	expressed	genes.	Both	secondary	metabolic	process	and	
abiotic	stimulus	GOIDs	are	enriched	in	the	set	of	cluster	1	genes,	cell	membrane	GOID	is	
enriched	in	the	set	of	cluster	2	genes,	abiotic	stimulus	GOID	is	enriched	in	the	set	of	cluster	
3	genes,	and	cell	wall	GOID	is	enriched	in	the	set	of	cluster	4	genes.
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Figure	1.5.	Flux	through	the	phenylpropanoid	biosynthetic	pathway	derived	from	RNA-seq	
gene	expression	data	in	the	context	of	a	modified	KEGG	map.	Box	plots	show	relative	gene	
expression	in	progeny	of	damaged	(blue)	and	control	(red)	plants.	The	following	genes	are	
included	in	the	map:	MgGB1	and	2	(gentiobiase;	Gene	IDs	1317357	and	1351622),	MgCou1	
and	2	(4-coumarate	ligase;	Gene	IDs1307066	and	1434953),	MgFLS1	(flavanol	synthase;	
Gene	ID	1400552),	Mg3’5’H1	(3’5’-hydroxylase;	Gene	ID	1338195),	MgCR1	and	2	
(cinnamoyl-CoA	reductase;	Gene	IDs	1399905	and	1315821),	MgLP1	(lactoperoxidase;	
Gene	ID	156083),	and	Mg5MAT1	(5-O-glucoside	6’-O-malonyltransferase;	Gene	ID	
1355759).	Green	arrows	indicate	inferred	increased	flux	through	that	step	in	the	pathway	
in	response	to	parent	leaf	damage,	red	arrows	indicate	inferred	decrease	flux	through	that	
step	of	the	pathway	in	response	to	parent	leaf	damage,	and	black	arrows	indicate	no	
inferred	change	in	flux	through	that	step	of	the	pathway	as	a	result	of	parent	environment.	
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CHAPTER	2*	

	
DNA	Methylation	and	gene	expression	in	Mimulus	guttatus	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
*	COLICCHIO,	J.	M.,	F.	MIURA,	J.	K.	KELLY,	T.	ITO	and	L.	C.	HILEMAN,	2015a	DNA	methylation	and	

gene	expression	in	Mimulus	guttatus.	BMC	genomics	16:	507.	
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Abstract	

	 Background:	The	presence	of	methyl	groups	on	cytosine	nucleotides	across	an	

organism’s	genome	(methylation)	is	a	major	regulator	of	genome	stability,	crossing	over,	

and	gene	regulation.		The	capacity	for	DNA	methylation	to	be	altered	by	environmental	

conditions,	and	potentially	passed	between	generations,	makes	it	a	prime	candidate	for	

transgenerational	epigenetic	inheritance.		Here	we	conduct	the	first	analysis	of	the	Mimulus	

guttatus	methylome,	with	a	focus	on	the	relationship	between	DNA	methylation	and	gene	

expression.	

	 Results:	We	present	a	whole	genome	methylome	for	the	inbred	line	Iron	Mountain	

62	(IM62).		DNA	methylation	varies	across	chromosomes,	genomic	regions,	and	genes.	We	

develop	a	model	that	predicts	gene	expression	based	on	DNA	methylation	(R2=0.2).		Post	

hoc	analysis	of	this	model	confirms	prior	relationships,	and	identifies	novel	relationships	

between	methylation	and	gene	expression.		Additionally,	we	find	that	DNA	methylation	is	

significantly	depleted	near	gene	transcriptional	start	sites,	which	may	explain	the	recently	

discovered	elevated	rate	of	recombination	in	these	same	regions.	

	 Conclusions:	The	establishment	here	of	a	reference	methylome	will	be	a	useful	

resource	for	the	continued	advancement	of	M.	guttatus	as	a	model	system.	Using	a	model-

based	approach,	we	demonstrate	that	methylation	patterns	are	an	important	predictor	of	

variation	in	gene	expression.		This	model	provides	a	novel	approach	for	differential	

methylation	analysis	that	generates	distinct	and	testable	hypotheses	regarding	gene	

expression.	
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Introduction	

DNA	cytosine	methylation	is	an	epigenetic	modification	that	acts	in	conjunction	with	

histone	modification	and	small	RNAs	to	regulate	gene	expression	(TATE	and	BIRD	1993;	

FLAVELL	1994;	ZILBERMAN	et	al.	2006)	and	control	transposable	elements	(MIURA	et	al.	2001;	

LIPPMAN	et	al.	2004).	In	addition,	DNA	methylation	appears	to	alter	mutation	rates	(XIA	et	al.	

2012)	and	to	decrease	rates	of	recombination	(MIROUZE	et	al.	2012).	It	is	found	in	

organisms	spanning	the	eukaryotic	phylogeny	(FENG	et	al.	2010;	HUFF	and	ZILBERMAN	2014),	

and	can	occur	in	many	sequence	contexts.	In	plants,	cytosine	methylation	can	be	found	in	

CG,	CHG,	or	CHH	contexts,	where	H	is	any	nucleotide	besides	G	(GRUENBAUM	et	al.	1981).	It	

appears	that	much	of	the	methylome	is	stable	within	an	individual;	however,	the	

methylome	does	exhibit	predictable	plastic	responses	to	developmental	and	environmental	

cues	(KINOSHITA	and	JACOBSEN	2012;	BOND	and	BAULCOMBE	2014a).		

Recent	work	has	greatly	expanded	our	knowledge	of	the	mechanisms	involved	in	

maintaining	and	modifying	DNA	methylation	in	plants	(LEONHARDT	et	al.	1992;	LINDROTH	et	

al.	2001;	CAO	and	JACOBSEN	2002;	LAW	and	JACOBSEN	2010;	LAW	et	al.	2013b;	BOND	and	

BAULCOMBE	2014b;	EICHTEN	et	al.	2014),	yet	we	still	do	not	fully	understand	how	specific	

patterns	of	DNA	methylation	in	and	near	coding	sequences	control	gene	expression.	In	

Arabidopsis	thaliana,	CG	DNA	methylation	in	regulatory	sequences	is	negatively	correlated	

with	gene	expression	(ZHANG	et	al.	2006;	ZILBERMAN	et	al.	2006),	possibly	through	limiting	

promoter	accessibility.	Contrastingly,	gene	body	CG	methylation	is	elevated	in	moderate	to	

highly	expressed	genes	(GRUENBAUM	et	al.	1981;	ZILBERMAN	et	al.	2006;	LI	et	al.	2012),	

potentially	though	the	removal	of	histone	variant	H2A.Z	(COLEMAN-DERR	and	ZILBERMAN	

2012).	Similar	patterns	of	association	between	the	distribution	of	plant	CG	methylation	and	
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gene	expression	have	been	found	in	the	wild	rice	(LI	et	al.	2012),	tomato	(ZHONG	et	al.	

2013),	and	maize	(EICHTEN	et	al.	2013a).	Additionally,	Arabidopsis	genes	within	

differentially	methylated	regions	tended	to	be	more	highly	expressed	in	individuals	with	

increased	CG	methylation,	but	lower	in	individuals	with	increased	non-CG	(CHG	and	CHH)	

methylation	(SCHMITZ	et	al.	2013c).	However,	the	interaction	between	gene	expression	and	

different	forms	of	DNA	methylation	in	and	around	genes	has	not	been	fully	explored.	For	

example,	the	impact	of	non-CG	methylation	on	gene	expression	is	especially	understudied,	

despite	its	established	role	in	regulating	transposable	elements	through	pre-	and	post-

transcriptional	silencing	(SAZE	et	al.	2012).		

The	standard	method	for	characterizing	genomic	patterns	of	DNA	methylation	is	to	

classify	genes	into	methylation	quantiles	and	then	compare	gene	expression	across	these	

groups	(ZILBERMAN	et	al.	2006;	LI	et	al.	2012;	GENT	et	al.	2013;	TAKUNO	and	GAUT	2013;	

ZHONG	et	al.	2013;	LI	et	al.	2014;	WANG	et	al.	2014).	Here,	we	adopt	an	explicit	model-based	

approach,	predicting	gene	expression	from	gene	methylation	and	other	basic	gene-specific	

features	(exon	length,	intron	length,	and	exon	number).	We	compare	the	methylome	of	an	

inbred	line,	to	gene	expression	from	a	distinct	recombinant	inbred	line,	and	test	how	well	

DNA	methylation,	in	combination	with	other	stable	genetic	factors,	predict	gene	expression	

across	lines	and	tissue	types.	The	explanatory	power	of	stable	epigenetic	variation	on	gene	

expression	is	relatively	unknown	(although	see	(YUAN	et	al.	2007)	for	model-based	

approaches	to	predicting	gene	expression	via	promoter	motifs	in	Saccharomyces	cerevisiae,	

and	(LI	et	al.	2008)	for	a	Sanger	sequencing	approach	to	gene	expression	modeling	based	

on	histone	and	DNA	methylation	in	rice).	With	the	model-based	approach	presented	here,	
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we	are	able	to	assess	the	scale	to	which	constitutive	epigenetic	variation	effects	global	gene	

expression,	and	the	patterns	of	DNA	methylation	through	which	this	regulation	is	manifest.		

Previous	studies	of	Mimulus	guttatus	have	demonstrated	transgenerational	

epigenetic	inheritance	(HOLESKI	2007;	HOLESKI	et	al.	2010;	SCOVILLE	et	al.	2011;	COLICCHIO	et	

al.	2014).	Herbivore	induced	defensive	traits	can	be	transmitted	between	generations,	and	

the	observed	transcriptional	basis	of	this	response	[11],	has	made	it	a	promising	model	

system	in	the	burgeoning	field	of	ecological	epigenetics	(HOLESKI	et	al.	2012;	HOLESKI	et	al.	

2013b;	LATZEL	et	al.	2013;	KILVITIS	et	al.	2014).	However,	along	with	identifying	

transmissible	epigenetic	marks,	it	is	vital	to	understand	the	role	that	stable	epigenetic	

regulation	has	on	gene	expression.	Here	we	present	the	first	M.	guttatus	methylome.	We	

utilize	a	novel	modeling	approach	to	untangle	the	complex	interactions	between	

methylation	and	gene	expression.	We	show	that	non-CG	gene	body	methylation	may	have	a	

significant	effect	on	gene	expression	despite	occurring	at	relatively	low	levels.		Utilizing	a	

GO	term	enrichment	approach,	we	demonstrate	that	certain	functional	categories	are	over-

represented	in	genes	with	high	gene	body	CG	methylation.	We	provide	evidence	that	there	

are	differences	in	methylation	and	gene	expression	between	chromosomes,	such	that	mean	

gene	expression	is	significantly	lower	across	some	chromosomes	than	others.	Finally,	we	

look	at	transcriptional	start	sites	across	the	genome,	where	recent	evidence	suggests	

increased	recombination	in	M.	guttatus	(HELLSTEN	et	al.	2013),	and	find	a	corresponding	

decrease	in	DNA	methylation.		
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Materials	and	Methods	

DNA	Extraction	and	Bisulfite	Sequencing	

We	germinated	seeds	from	the	M.	guttatus	Iron	Mountain	inbred	line,	IM62,	the	line	

that	was	sequenced	to	establish	the	M.	guttatus	reference	genome	(HELLSTEN	et	al.	2013)(	

http://phytozome.jgi.doe.gov).	When	the	second	leaf	pair	of	seedlings	was	just	visible	we	

collected	leaf	tissue	from	multiple	seedlings,	flash	froze	it	in	liquid	nitrogen,	and	stored	it	at	

-80°	C.	We	performed	DNA	extractions	using	a	CTAB	protocol	(HOLESKI	et	al.	2013a).	We	

pooled	DNA	from	multiple	seedlings	before	library	construction	in	order	to	limit	the	effects	

of	aberrant	intra-individual	variation(HARDCASTLE	2013).	From	this	pooled	sample	we	

generated	sequencing	template	for	whole	genome	bisulfite	sequencing	(WGBS)	following	

the	PBAT	(Post-Bisulfite	Adaptor	Tagging)	protocol	(MIURA	et	al.	2012).	With	1	ng	of	

unmethylated	lambda	DNA	obtained	from	Promega	used	as	a	spike-in	control	for	

conversion	efficiency,	100	ng	of	genomic	DNA	from	M.	guttatus	was	treated	with	bisulfite	

using	EZ	DNA	Methylation	kit	from	Zymo	Research.	Two	rounds	of	random	primer	

extension	for	tagging	bisulfite	treated	DNA	with	adaptors	were	performed	using	primers	

for	single-end	library	construction	as	described	in	[42].	The	concentration	of	templates	was	

determined	by	qPCR	with	Library	Quantification	Kits	from	KAPA	biosystems.	A	single	lane	

of	100	cycle	reactions	on	HiSeq	2500	was	assigned	for	the	library	sequencing.		

	

Read	Mapping	

We	used	the	software	BMap	(MIURA	et	al.	2012)	(http://itolab.med.kyushu-

u.ac.jp/BMap/index.html)	to	map	bisulifte	treated	reads	to	the	M.	guttatus	v2.0	reference	

genome	(http://phytozome.jgi.doe.gov).	In	short,	BMap	first	searches	candidate	genomic	
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loci	for	each	read	in	two	duplicated	genome	sequences,	one	with	every	C	in	the	genome	

converted	to	a	T	(C2T),	and	one	with	G	to	A	(G2A),	using	an	approach	called	adaptive	seed	

(KIEŁBASA	et	al.	2011).	Next	BMap	creates	pairwise	alignments	between	the	read	and	

original	DNA	sequence	of	every	candidate	loci,	and	calculates	scores	for	each	alignment	

allowing	mismatches	between	T	in	the	reads	with	C	in	the	reference.	Finally	an	alignment	

with	the	highest	score	is	reported	for	each	read.	We	used	default	parameters	for	mapping	

with	BMap.	Using	alignments	exported	by	BMap,	methylation	status	for	every	cytosine	in	

every	read	was	called,	and	counts	both	supporting	the	methylated	and	unmethylated	state	

are	assigned	for	every	cytosine	residue	of	the	reference	genome.	Methylation	levels	for	CG,	

CHG	and	CHH	contexts	are	exported	to	different	files	and	analyzed	independently.	

	

Global	Methylome	Analysis	

We	estimated	the	number	of	total	and	methylated	cytosines	mapped	across	the	

genome	on	a	per-nucleotide	basis	for	the	M.	guttatus	IM62	seedling	methylome.	Percent	

methylation	was	calculated	for	each	1	kb	window	across	the	genome	for	total	methylation,	

as	well	as	methylation	in	each	of	the	three	sequence	contexts.	Centromere	positions	were	

estimated	from	characteristic	repeat	sequences	(FLAGEL	et	al.	2014).		

	

Gene	Methylation	Analysis	

Using	the	M.	guttatus	v2.0	annotations	(GOODSTEIN	et	al.	2012),	we	calculated	the	

percent	methylation	in	each	sequence	context	for	each	of	the	24,130	annotated	genes.		Only	

the	17,043	for	which	we	had	gene	expression	data	(COLICCHIO	et	al.	2014)	were	used	for	

down-stream	analysis.	For	each	annotated	gene	we	defined	three	regions:	up-stream	as	the	
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1kb	up-stream	of	the	transcriptional	start	site,	gene	body	as	the	transcribed	portion	of	the	

gene,	and	down-stream	as	the	1kb	downstream	of	the	3’	UTR.	Gene	expression	values	were	

generated	previously	by	RNAseq	from	seedling	tissue	of	genetically	distinct	M.	guttatus	–	a	

recombinant	inbred	line	derived	from	cross	between	divergent	populations	(COLICCHIO	et	al.	

2014).		

In	order	to	determine	if	gene	methylation	and	expression	varied	across	

chromosomes	we	performed	four	ANOVAs	with	chromosome	as	an	explanatory	variable	

and	CG,	CHG,	CHH,	and	log-transformed	gene	expression	as	response	variables.		

Gene	ontology	terms	were	already	assigned	to	genes	(COLICCHIO	et	al.	2014),	and	

were	utilized	both	to	calculate	the	total	number	of	GO	terms	per	gene,	as	well	as	to	perform	

a	Fisher’s	Exact	test	to	determine	what,	if	any,	types	of	genes	were	enriched	or	depleted	in	

our	set	of	highly	CG	methylated	genes,	and	our	set	of	chromosomes	exhibiting	significantly	

reduced	gene	expression	levels.		

In	order	to	choose	a	predictive	gene	expression	model,	we	included	methylation	in	

each	of	three	contexts,	percent	methylation	in	gene	bodies,	up-stream	and	down-stream	

regions,	intron	length	(sum	of	all	introns	for	a	gene),	exon	length	(sum	of	all	exons	for	a	

gene),	number	of	exons,	and	interaction	terms	up	to	the	third	degree.	Gene	length,	intron	

size,	and	intron	number	are	all	known	to	be	positively	correlated	with	gene	expression	in	

plants	(REN	et	al.	2006),	opposite	the	trend	observed	in	animals	(CASTILLO-DAVIS	et	al.	

2002).	We	used	a	Bayesian	information	criterion	(BIC)	(POSADA	and	BUCKLEY	2004)	to	

inform	our	restricted	maximum	likelihood	(REML)	model	selection	(done	in	order	to	limit	

the	number	of	parameters	included	in	our	model,	and	in	turn	reduce	over	fitting).	

Additionally,	genes	were	parsed	randomly	into	thirds,	and	parameters	were	tunes	for	each	
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of	these	three	groups	independently.	These	models	were	then	used	to	predict	gene	

expression	in	the	remaining	to	gene	groups	to	provide	3-fold	cross-validation	(KOHAVI	

1995).		We	Z-transformed	values	to	make	parameter	estimates	comparable,	making	a	value	

of	0	represent	the	mean	value	for	a	variable,	with	positive	or	negative	deviations	reflecting	

the	number	of	standard	deviations	a	value	is	from	the	mean.		

We	identified	transposable	elements	across	the	M.	guttatus	genome	from	the	repeat-

masked	genome	assembly	(GOODSTEIN	et	al.	2012).	Genomic	repeats	larger	than	100	base	

pairs	were	selected	and	percent	methylation	in	all	three	sequence	contexts	was	identified	

for	these	repeats.		

	

Results	and	Discussion	

Global	Methylation	

Of	the	186	million	reads	generated,	126	million	were	mapped	to	the	genome	(67.7%	

mapping,	mean	read	depth	=	19,	median	=	6).	This	proportion	is	typical	for	Mimulus	

genomic	studies	(eg.	KELLY	et	al.	2013)	given	the	substantial	proportion	of	the	physical	

genome	that	is	not	contained	in	the	v2	reference	genome.		Mapping	to	unmethylated	

lambda	DNA	confirmed	that	our	PBAT	treatment	achieved	99.4%	conversion	of	

unmethylated	cytosines	to	thymine.	Methylation	is	most	common	in	a	CG	context	(72%),	

intermediate	in	a	CHG	context	(36.5%),	and	lowest	in	a	CHH	context	(6.1%)(Figure	2.1),	

with	23%	of	total	cytosine’s	being	methylated.	The	percent	of	genome	methylation	found	in	

M.	guttatus	is	higher	in	all	contexts	than	Oryza	sativa	(LI	et	al.	2012),	Arabiopsis	thaliana	

(FENG	et	al.	2010),	Brachypodium	distachyiom	(TAKUNO	and	GAUT	2013),	lower	in	all	contexts	

than	Solanum	lycopersicum	(ZHONG	et	al.	2013),	and	both	higher	or	lower	than	Zea	mays	



	 49	

(GENT	et	al.	2013)	and	Glycine	max	(SCHMITZ	et	al.	2013a)	depending	on	context	(Figure	2.1).	

While	CHH	methylation	levels	are	higher	in	M.	guttatus	than	Z.	mays	and	G.	max,	the	

opposite	is	true	for	CHG	methylation.	CG	methylation	is	highest	in	Z.	Mays,	moderate	in	M.	

guttatus,	and	lowest	in	G.	max	(Figure	2.1).			

	Approximate	positions	of	centromeres	on	M.	guttatus	chromosomes	are	given	by	

the	location	and	density	of	centromeric	repeats	(FLAGEL	et	al.	2014).	We	confirmed	that	

regions	of	the	genome	with	high	levels	of	centromeric	repeats	also	tended	to	have	high	CG,	

CHG,	and	CHH	methylation	(Figure	2.2).	We	found	that	gene	expression	and	gene	body	CG,	

CHG,	CHH	methylation	varied	significantly	across	chromosomes	(log(expression):	F13,17042	=	

4.43,	CG:	F13,17042	=	10.85,	CHG:	F13,17042	=	19.07,	CHH:	F13,170423	=	6.10,	p<0.001)).	

Chromosomes	that	have	on	average	higher	levels	of	methylation	tended	to	also	have	lower	

gene	expression	(Figure	2.3).	From	this	result,	it	is	unclear	whether	certain	chromosomes	

are	constitutively	more	highly	methylated	and	transcriptionally	silenced,	or	whether	

throughout	development	epigenetic	modification	at	a	whole	chromosome	scale	can	change	

the	relative	expression	of	genes	across	entire	chromosomes.	It	does	appear	that	silenced	

chromosomes	have	a	higher	density	of	heterochromatic	repeats,	hinting	that	certain	

chromosomes	may	be	condensed	throughout	development.		

	

Gene	Methylation	

Methylation	was	significantly	depleted	in	gene	bodies	relative	to	both	inter-genic	

regions	and	transposable	elements	in	all	three-sequence	contexts	(Table	2.1).	While	CG	

methylation	was	only	modestly	reduced	in	gene	bodies	relative	to	intergenic	regions	(Gene	

Bodies:	56%,	Intergenic:	75%),	CHG	(Gene	Bodies:	3.8%,	Intergenic:	45%)	and	CHH	(Gene	
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Bodies:	1.2%,	Intergenic:	7.2%)	methylation	levels	were	drastically	reduced	(Table	2.1).	

Similar	results	were	found	in	Oryza	sativa	(LI	et	al.	2012),	Arabidopsis	thaliana	(SHEN	et	al.	

2012),	and	Glycine	max	(SCHMITZ	et	al.	2013a).	Methylation	both	up-stream	and	down-

stream	of	gene	starts	was	also	reduced	relative	to	genome-wide	averages.	We	found	that	

up-stream	regions	were	elevated	in	non-CG	methylation	compared	to	gene	bodies,	but	that	

up-stream	CG	methylation	was	reduced	compared	to	gene	body	CG	methylation	(Table	2.1).	

The	methylation	levels	in	all	contexts	(CG,	CHG,	CHH)	and	genic	positions	(up-

stream,	down-stream,	and	gene	body)	at	a	given	gene	were	significantly	correlated	with	

one	another	(Figure	2.4).	These	were	positive	correlations	for	all	cases	but	two.	The	two	

exceptions	were	negative	correlations	between	up-	and	down-stream	CHH	methylation	

with	gene	body	CG	methylation.	The	most	significant	positive	correlations	were	found	

between	CHG	and	CHH	or	CG	methylation	levels	at	both	up-stream	and	down-stream	

regions,	as	well	as	between	CHG	and	CHH	gene	body	methylation.	Interestingly,	the	

methylation	levels	for	all	three	contexts	vary	greatly	across	the	three	gene	regions	in	a	

fairly	unpredictable	manner.	For	instance,	correlation	between	up-stream	CG	methylation	

and	gene	body	CG	methylation	is	only	r	=	0.14.	This	highlights	the	disparate	functions	of	

regulatory	region	methylation	with	that	of	gene	body	methylation	(JONES	2012).	The	

extremely	high	correlations	between	CHG	and	CHH	methylation	(Figure	2.4,	r	>	0.67)	in	all	

three	regions	is	likely	due	to	the	involvement	of	similar	enzymatic	machinery	in	the	

propagation	of	both	types	of	non-CG	methylation	(BARTEE	et	al.	2001).		

	

Methylation	Effect	on	Gene	Expression	
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A	stepwise	cubic	polynomial	model	was	selected	to	predict	log(gene	expression)	

based	on	minimum	BIC.	Out	of	a	possible	454	parameters,	the	minimum	BIC	criterion	

selected	a	model	with	29	factors	that	explained	(R2)	20.1%	of	the	variation	in	log	

transformed	expression	values	(SS	Model:	1764,	SS	Error:	6981,	F28,17042	=153.6,	p<0.0001,	

Tables	2,	3	and	4,	Figure	2.5,	Appendix	10).	Including	all	454	parameters	increases	R2	only	

marginally	(to	23.3%),	and	the	minimum	calculated	R2	calculated	in	3-fold	cross-validation	

was	17.9%.	Generally,	there	is	an	excess	of	genes	predicted	to	be	expressed	at	log-

transformed	values	between	1.5	and	2.5,	that	were	actually	expressed	at	levels	less	than	

1.2,	as	well	as	genes	expressed	above	4,	which	this	model	never	predicts	(Appendix	10).		It	

is	clear	that	while	gene	methylation	can	modify	gene	expression,	it	cannot	predict	the	

complete	repression,	or	extremely	high	expression	of	some	genes.	As	all	parameters	were	

Z-transformed	prior	to	modeling,	the	effect	estimates	are	comparable	across	variables	

(Table	2.4).	In	order	to	maintain	both	statistical	and	molecular	consistency	throughout,	

both	Z-transformed	values	and	raw	values	are	reported.		The	inclusion	of	both	various	

forms	of	DNA	methylation	and	gene	architecture	(number	of	exons,	exon	length,	intron	

length)	have	not	been	included	in	a	single	model	explicitly	testing	their	ability	to	predict	

gene	expression,	but	their	independent	effects	have	often	been	looked	at	in	relation	to	gene	

expression.	While	it	is	hard	to	compare	our	integrative	analysis	on	gene	expression	with	

prior	studies,	we	generally	find	the	same	direction	of	effect	in	our	data	as	was	found	in	

other	plant	systems	(ZILBERMAN	et	al.	2006).	Trends	are	thus	not	Mimulus	specific,	but	likely	

more	general	effects	of	DNA	methylation	on	gene	expression	in	angiosperms.	Finally,	when	

discussing	the	role	of	various	forms	of	methylation	on	gene	expression	we	often	designate	

a	specific	type	of	methylation	as	having	a	positive	or	negative	effect	on	gene	expression.		In	
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this	context	that	indicates	that	there	was	significant	predictive	ability	for	a	given	type	of	

methylation	on	gene	expression.		However,	due	to	the	nature	of	this	experimental	design	

we	cannot	definitively	define	the	arrow	of	causation.		

	

Gene	Body	CG	Methylation	

Linear	Effects:	𝐥𝐨𝐠 𝑮𝑬 = 𝟐.𝟔𝟏− 𝟎.𝟎𝟕𝒎𝒄𝒈 = 𝒇𝟏,	where	mcg	is	gene	body	CG	

methylation.	Controlling	for	gene	architecture	and	other	forms	of	methylation,	we	observe	

a	negative	linear	effect	of	gene	body	CG	methylation	on	gene	expression	(Figure	2.5	and	6a.	

black	line).	The	effect	size	of	gene	body	CG	methylation	(𝑚!")	is	-0.07	(Table	2.3);	a	gene	

with	𝑚!" = −1 (32%)	is	predicted	to	have	35%	higher	expression	than	one	with	𝑚!" = 1	

(80%)	(Figure	2.6a,	black	line).	Previous	studies	report	that	gene	body	CG	methylation	is	

positively	correlated	with	gene	expression	(GRUENBAUM	et	al.	1981;	ZHANG	et	al.	2006;	

ZILBERMAN	et	al.	2006;	LI	et	al.	2012).		While	the	linear	component	of	the	model	seems	to	

contradict	these	previous	reports,	it	cannot	be	interpreted	in	isolation.	The	polynomial	and	

interaction	terms	indicate	that	gene	body	methylation	has	neither	universally	positive	nor	

negative	effects	on	gene	expression.	Traditional	methods	that	looked	for	associations	

between	gene	expression	and	gene	body	CG	methylation	(which	find	a	positive	correlation	

between	the	two),	and	modeling	methods	as	applied	here	followed	by	only	analysis	of	the	

simple	linear	terms	(which	finds	a	negative	correlation)	come	up	quite	short	in	portraying	

the	role	of	gene	body	CG	methylation	in	transcriptional	regulation.		By	considering	non-

linear	effects	of	methylation	on	gene	expression	we	can	begin	to	increase	our	

understanding	of	the	role	of	gene	body	CG	methylation	in	gene	regulation.			
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Quadratic	Effects:	𝒇𝟏−𝟎.𝟏𝒎𝒄𝒈
𝟐 = 𝒇𝟐.  The	squared	gene	body	CG	methylation	term	

has	the	second	largest	effect	size	of	any	methylation	term	(after	gene	body	CHG	

methylation)	on	gene	expression,	and	leads	to	a	predicted	local	𝑚!" maximum	for	gene	

expression	(due	to	it	being	a	negative	parabola,	Figure	2.6a,	green	line).		This	maximum	is	

found	at	𝑚!" = −0.35	(47%).		As	gene	methylation	increases	or	decreases	relative	to	a	

moderate	45%	methylation,	gene	expression	is	expected	to	decrease	(Figure	2.6a;	green	

line).		

Cubic	Effects:	𝒇𝟐 − 𝟎.𝟎𝟑𝒎𝒄𝒈
𝟑 = 𝒇𝟑.		The	cubed	gene	body	CG	methylation	term	is	also	

negative;	compared	to	our	quadratic	model,	this	leads	to	higher	predicted	gene	expression	

for	genes	with	lower	than	average	methylation,	and	lower	for	genes	with	higher	than	

average	methylation.	This	slightly	lowers	the	predicted	local	maximum	of	gene	expression	

to	𝑚!" = −0.43(45%)	(Figure	2.6a,	blue	line).	These	data	agree	with	previous	findings	that	

there	is	a	non-linear	relationship	between	gene	body	CG	methylation	and	gene	expression	

with	an	intermediate	optimum	(ZILBERMAN	et	al.	2006).		

	

Interaction	Terms	

	 Negative	Promoter	CG	Methylation	Interaction:	𝒇𝟑−.𝟎𝟐𝒎𝒄𝒈𝒖𝒄𝒈 = 𝒇𝟒.	The	effect	of	

interaction	terms	in	this	model	is	best	understood	by	comparing	expected	gene	expression	

across	𝑚!"values	for	a	variety	of	interaction	term	values.		Changes	in	linear	interaction	

term	values	(in	this	case	up-stream	cg	methylation	𝑢!"),	lead	to	a	change	in	our	linear	𝑚!"	

coefficient.		For	example,	at	𝑢!" = 1	(82%),	0.2𝑚!"	is	subtracted	from	our	earlier	model,	

we	are	left	with:	
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log 𝐺𝐸 = 2.61−.𝟎𝟕𝒎𝒄𝒈 − .10𝑚!"
! − 0.03𝑚!"

! −.𝟎𝟐𝒎𝒄𝒈 = 𝑓!!!! 	

𝑓!!!! = 2.61−.𝟎𝟗𝒎𝒄𝒈 − .10𝑚!"
! − 0.03𝑚!"

! 	

	

At	𝑢!" = 1	(82%)	we	find	that	the	local	maximum	for	gene	expression	is	at	

𝑚!" = −0.62	(40.2%),	while	at	𝑢!" = −1	(24.1%)	the	local	maximum	for	gene	expression	

is	at	𝑚!" = −0.29	(48.8%).		As	up-stream	CG	methylation	decreases	(Figure	2.6b,	from	

purple	to	yellow	lines),	gene	body	CG	methylation	is	expected	to	have	a	more	positive	effect	

on	gene	expression.			

While	it	has	long	been	noted	that	regulatory	region	methylation	is	linked	with	

reduced	gene	expression,	here	we	find	evidence	that	the	difference	in	methylation	between	

these	regions	also	appears	to	correlate	with	gene	expression.	The	negative	interaction	term	

between	up-stream	and	gene	body	CG	methylation	predicts	that	distinctly	different	levels	

of	methylation	up-stream	and	within	genes	tends	to	correspond	with	higher	levels	of	gene	

expression.	When	gene	body	CG	methylation	and	regulatory	methylation	are	both	high,	

gene	expression	tends	to	be	low	(Figure	2.6b,	purple	lines	at	high	gene	body	CG	values).	

However,	as	either	decreases	(Figure	2.6b,	purple	lines	at	low	gene	body	CG	values,	or	

yellow	lines	at	high	CG	methylation	values),	gene	expression	is	expected	to	increase.		

	

	 Three	Positive	Interaction	Terms:	𝒇𝟒 +𝒎𝒄𝒈 .𝟎𝟐𝒖𝒄𝒉𝒉+.𝟎𝟐𝒎𝒄𝒉𝒉+.𝟎𝟒𝒍𝒆𝒙𝒐𝒏 = 𝒇𝟓:	

While	only	up-stream	CG	methylation	showed	a	negative	interaction	with	gene	body	CG	

methylation,	three	terms	have	positive	linear	interactions:	Up-stream	CHH	methylation,	

gene	body	CHH	methylation,	and	exon	length.		These	can	be	treated	in	much	the	same	way	



	 55	

as	our	negative	interaction	term.		Depending	on	the	values	of	these	terms,	they	can	offset	

each	other	and	lead	to	the	removal	of	any	interaction	effect.		For	example	if	exon	length	

(𝑙!"#$) = −1	and	up-stream(𝑢!!!)	and	gene	body(𝑚!!!)	CHH	methylation	=	1	these	

positive	interaction	terms	cancel	out	(-.4+.2+.2=0).	However,	if	we	consider	them	varying	

in	the	same	direction,	they	can	have	a	striking	effect	on	the	relationship	between	gene	body	

CG	methylation	and	gene	expression.	At		𝑢!!! = 𝑚!!! = 𝑙!"#$ = 1	(and	the	negative	

interaction	term	𝑢!" = 0),	we	see	the	local	maximum	is	at	a	methylation	level	of	𝑚!" =

−0.05	(55.1%).		If	our	negative	interaction	term	𝑢!" = −1	,	this	increases	to	𝑚!" = +0.05	

(57.3%)	(Figure	2.6b,	varying	the	values	of	our	interaction	terms,	𝑢!!! = 𝑚!!! = 𝑙!"#$ =

−𝑢!"	from	-1.6	to	1.6,	as	the	summed	interaction	term	increases	(lines	become	yellow)	the	

local	maxima	for	gene	expression	does	so	as	well).		When	𝑢!!! = 𝑚!!! = 𝑙!"#$ = −𝑢!" < 0,	

gene	body	CG	methylation	is	almost	purely	repressive.	At	a	summed	interaction	value	less	

than	-0.7	there	is	no	longer	a	local	maximum,	and	CG	methylation	has	a	purely	negative	

effect	on	gene	expression.		

	

	 Quadratic	Interaction	Terms: 𝐥𝐨𝐠 𝑮𝑬 = 𝒇𝟓+.𝟎𝟑𝒎𝒄𝒈
𝟐 𝒍𝒆𝒙𝒐𝒏 = 𝒇𝟔:	Finally	the	

interaction	between	the	quadratic	gene	body	CG	methylation	term	and	exon	length	is	

included	in	this	model.	As	our	quadratic	term	increases,	not	only	does	the	position	of	the	

local	gene	expression	maximum	increase,	so	to	does	the	inflection	point	(the	point	at	which	

the	function	changes	from	concave	to	convex).		Now,	at	the	same	linear	interaction	values	

tested	above	(𝑢!!! = 𝑚!!! = 𝑙!"#$ = −𝑢!" = 1),	our	local	maximum	occurs	at	𝑚!" =

0.07 (57.8%)(Figure	2.6c).	As	exon	sizes	increase,	the	effect	of	gene	body	CG	methylation	is	

expected	to	rapidly	become	more	positive,	and	peak	gene	expression	is	predicted	to	occur	
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at	higher	𝑚!"levels.	At	𝑙!"#$ = 3(3.5	kb),	we	find	that	the	local	maximum	for	gene	

expression	occurs	at	𝑚!" = 0.90	(78.1%)	and	at	𝑙!"#$ = 4(6kb)	there	is	no	longer	a	local	

maximum	for	𝑚!",	and	the	highest	expected	gene	expression	occurs	at	𝑚!" approaching	

100%	(largest	gene	size	in	Figure	2.6c).	It	appears	that	for	genes	with	smaller	exons,	

moderately	methylated	genes	are	most	highly	expressed,	but	as	genes	become	larger	so	to	

does	the	level	of	gene	methylation	that	is	associated	with	more	highly	expressed	genes.	Our	

gene	size	by	gene	body	CG	methylation	results	confirm	a	pattern	observed	by	Zilberman	et	

al.	(ZILBERMAN	et	al.	2006)	in	the	first	genome-wide	methylome	analysis	in	Arabidopsis	in	

which	found	only	a	marginal	relationship	between	gene	size	and	gene	expression,	except	

for	the	genes	in	which	gene	bodies	were	methylated	and	then	they	found	a	positive	

relationship	between	gene	size	and	gene	expression.		

	

	 Individual	effects	of	interaction	terms:		𝐥𝐨𝐠 𝑮𝑬 = 𝒇𝟓+ .𝟎𝟖𝒍𝒆𝒙𝒐𝒏− .𝟎𝟐𝒍𝒆𝒙𝒐𝒏𝟐 = 𝒇𝟔:	

Finally,	we	consider	the	effect	of	multiple	terms	simultaneously.	Up	until	this	point	we	have	

only	included	gene	body	CG	methylation	effects,	and	its	interaction	terms,	while	not	

including	the	independent	effects	of	the	term	with	which	it	interacts.	Independent	of	gene	

body	CG	methylation,	we	find	that	gene	expression	tends	to	increase	as	the	standardized	

exon	length	increases	from	-1	(500bp)	to	2	(2kb),	and	beyond	this	point	we	expect	a	

decline.		In	the	absence	of	interaction	terms,	only	considering	independent	effects	of	gene	

body	CG	methylation	and	exon	length,	we	would	estimate	that	peak	gene	expression	occurs	

at	an	exon	length	of	2kb,	and	methylation	of	45%.	Here	we	show	that	the	effect	of	gene	

body	CG	methylation	on	expression	is	extremely	size	dependent,	and	that	gene	expression	

is	expected	to	be	highest	for	large	highly	gene	body	CG	methylated	genes,	but	lowest	for	



	 57	

small	highly	gene	body	CG	methylated	genes	(Figure	2.6d).	It	may	be	that	as	exon	length	

increases,	gene	methylation	is	necessary	to	stabilize	transcription,	while	for	smaller	genes	

it	is	not	necessary	for	this	purpose,	and	rather	plays	a	repressive	effect	due	to	condensing	

chromatin	near	the	transcription	start	site.		

In	this	same	way	all	other	independent	and	interaction	terms	could	be	added	to	this	

model,	parameters	considered,	and	hypotheses	tested.		As	nine	distinct	parameters	are	

included	(with	27	total	terms)	in	this	model	the	results	quickly	become	difficult	to	

conceptualize	or	visualize,	yet	through	full-model	construction,	followed	by	simplification	

methods	as	presented	above	it	is	possible	to	decipher	complex	higher	order	regulatory	

interactions.	We	briefly	discuss	the	effects	of	the	other	significant	gene	size	and	

methylation	terms	in	this	model.	

	

Intron	Length	

	 Intron	length	shows	significant	first,	second,	and	third	order	effects	with	a	gene	

expression	peak	at	an	intron	size	of	approximately	1700	base	pairs.		Additionally,	a	positive	

interaction	term	with	both	exon	length	and	number	of	introns	suggests	that	generally,	

longer	genes	with	more	introns	tend	to	be	more	highly	expressed.	Although	relatively	large	

genes	do	tend	to	be	most	highly	expressed,	there	are	negative	quadratic	terms	for	both	

exon	and	intron	length	that	suggest	after	a	certain	point,	increasing	exon	and	intron	length	

should	be	associated	with	decreased	gene	expression.			

	

Non-CG	Gene	Body	Methylation	
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	 Gene	body	CHG	methylation	had	significant	linear,	quadratic,	and	cubic	independent	

terms,	and	an	exon	length	interaction	term.	Gene	body	CHG	methylation	has	a	negative	

effect	on	gene	expression	across	nearly	its	full	range	of	possible	values	(Figure	2.5),	and	it	

appears	that	it	is	the	increase	from	no	CHG	methylation	to	slight	CHG	methylation	that	

reduces	gene	expression.		After	this	point	the	effect	of	CHG	methylation	appears	to	be	

minimal.	The	negative	exon	length	interaction	term	suggests	that	long	genes	with	CHG	

methylation	tend	to	be	more	significantly	repressed	than	smaller	genes.		

Gene	body	CHH	methylation	was	found	to	have	a	negative	effect	on	gene	expression	

(Figure	2.5),	but	a	positive	interaction	with	gene	body	CG	methylation.	Thus,	as	gene	body	

CHH	methylation	increases,	gene	body	CG	methylation	is	expected	to	have	a	more	positive	

effect	on	gene	expression,	but	mean	gene	expression,	independent	of	gene	body	CG	

methylation,	is	expected	to	decrease.	Like	CHG	methylation,	a	manual	inspection	reveals	

that	the	jump	from	no	CHH	methylation	to	low	levels	of	CHH	methylation	leads	to	a	

decrease	in	gene	expression,	but	after	this,	the	effects	of	increased	methylation	are	

minimal.			

While	it	has	been	suggested	that	non-CG	gene	body	methylation	may	be	

misattributed	to	genomic	regions	that	are	actually	pseudogenes	or	paralogs	(SCHMITZ	et	al.	

2013a;	SEYMOUR	et	al.	2014),	here	we	find	evidence	that	in	at	least	some	cases	these	genes	

are	still	expressed,	albeit	at	lower	levels	than	non-methylated	genes.		One	possible	

explanation	is	that	non-CG	methylation	of	genes	may	be	a	first	step	on	the	path	toward	

pseudogenization	(LI	et	al.	2005),	whereby	genes	become	targeted	by	non-CG	methylation,	

gene	expression	is	reduced,	mutational	constraints	become	lightened,	and	eventually	the	

gene	becomes	entirely	non-functional.		Additionally,	it	may	be	that	tightly	developmentally	
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controlled	small	RNAs	are	responsible	for	the	majority	of	this	methylation,	and	the	use	of	

identical	tissue	for	methylation	and	gene	expression	analysis	would	identify	a	stronger	role	

of	gene	body	non-CG	methylation	on	gene	expression.	Finally,	even	trace	amounts	of	non-

CG	gene	body	methylation	may	be	indicative	of	the	presence	of	small	RNAs,	and	RNA-

directed	DNA	methylation	(RdDM)	(WASSENEGGER	2000).		It	could	be	that	the	methylation	of	

just	a	few	nucleotides	by	a	single	24nt	siRNA	is	enough	to	reduce	gene	expression,	without	

significantly	altering	the	methylation	state	of	the	whole	gene.	

	

Regulatory	Region	Methylation	

	 Along	with	a	negative	interaction	with	gene	body	CG	methylation,	up-stream	CG	

methylation	also	has	a	direct	negative	effect	on	gene	expression	(Figure	2.5)	and	a	negative	

interaction	with	up-stream	CHH	methylation.		Not	only	does	up-stream	CG	methylation	

limit	the	positive	effect	of	gene	body	CG	methylation	on	predicted	gene	expression,	it	also	

directly	reduces	predicted	expression.	Up-stream	CHH	methylation	has	both	a	significant	

positive	linear	effect	on	gene	expression	(Figure	2.5),	and	a	positive	interaction	with	gene	

body	CG	methylation.	The	negative	interaction	term	with	up-stream	CG	methylation	

suggests	that	while	up-stream	CHH	methylation	generally	has	a	positive	effect	on	gene	

expression,	when	it	is	found	alongside	CG	methylation,	this	effect	is	negated.			While	down-

stream	CHH	methylation	did	not	interact	with	gene	body	CG	methylation,	it	was	also	found	

to	have	a	positive	effect	on	gene	expression	(Figure	2.5).			

	 A	previous	study	in	Arabidopsis	similarly	found	that	there	was	a	positive	correlation	

between	gene	expression	and	regulatory	CHH	methylation	(albeit	not	in	a	regression	

framework)	(GENT	et	al.	2013).	They	posit	that	as	gene	expression	increases,	unstable	
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transcripts	are	produced	as	by-products	at	both	the	5’	and	3’	ends	of	genes.		In	turn,	this	

lead	to	the	production	of	small	RNAs	that	can	target	and	cause	CHH	methylation	bracketing	

highly	expressed	genes	through	RNA	directed	DNA	methylation	(RdDM).	The	possibility	

that	increased	gene	expression	causes	increased	regulatory	CHH	methylation,	and	not	vice-

versa	does	not	introduce	bias	in	this	framework,	but	rather	reinforces	that	our	

interpretations	do	not	imply	causality	between	these	variables.		

	

Gene	expression	modeling	overview	

	While	the	traditional	method	of	looking	for	simple	associations	between	

methylation	state	and	gene	expression	has	provided	some	insight	into	epigenetic	

regulation,	here	we	demonstrate	that	modeling	approaches	can	provide	additional	insight	

into	these	systems.	We	explain	a	surprisingly	high	(20.1%)	amount	of	the	variation	in	

log(gene	expression)	simply	through	methylation	and	gene	architecture	variation.	We	

considered	a	potential	454	parameters	in	our	model	before	settling	on	29,	but	it	is	

important	to	note	that	many	other	factors	such	as	presence	of	enhancers	within	the	gene	

body,	distance	to	transposable	elements,	likely	also	modify	the	role	of	methylation	on	

expression.		By	considering	exon	and	intron	length	within	this	model	we	do	take	the	first	

steps	to	account	for	these	potential	confounding	factors	of	methylation	on	expression.	It	is	

worth	stressing	that	the	gene	expression	and	methylome	data	were	not	only	collected	from	

different	individuals,	but	also	different	genetic	lines,	using	different	vegetative	tissue	types,	

and	grown	under	slightly	different	greenhouse	conditions.	It	is	certainly	possible	that	a	

similar	model,	tuned	across	multiple	paired	methylome	and	gene	expression	samples,	

could	predict	gene	expression	with	greater	precision.	This	portion	of	gene	expression	
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variation	explained	represents	that	which	is	at	least	relatively	stable	across	individual	

genotypes,	tissue,	and	conditions.		While	here	we	apply	this	model	to	gene	expression	on	a	

gene-by-gene	basis,	through	altering	the	response	variable	to	another	parameter	of	a	gene,	

such	as	it’s	mutation	rate,	gene	expression	variance,	or	the	tissues	in	which	it	is	expressed,	

this	model	could	be	extended	to	look	for	other	roles	of	DNA	methylation	on	gene	function	

and	evolution.			

	 Results	from	this	and	other	(ZILBERMAN	et	al.	2006;	LI	et	al.	2012;	WANG	et	al.	2014;	

YANG	et	al.	2015)	studies	suggest	that	gene	body	CG	methylation	needs	to	be	considered	to	

have	a	quadratic	effect	on	gene	expression,	and	that	this	effect	is	highly	dependent	on	exon	

size.	Thus,	genes	can	either	be	parsed	according	to	exon	length	prior	to	estimating	the	role	

of	gene	body	CG	methylation	on	expression,	or	the	interaction	between	exon	length	and	

methylation	should	be	considered	in	the	model.		Other	forms	of	methylation	appear	to	have	

a	more	straightforward	role	in	regulating	gene	expression,	and	in	some	cases	it	may	suffice	

to	predict	that,	for	example,	as	up-stream	CG	methylation	increases	at	a	gene,	its	expression	

will	likely	decrease.				

	

Gene	Ontology	Analysis	of	Genes	with	High	CG	Gene	Body	Methylation	

Comparing	genes	in	the	top	10%	genome	wide	for	gene	body	CG	methylation	with	

the	remainder	of	the	genome,	we	found	numerous	gene	categories	that	are	either	enriched	

or	depleted	in	our	set	of	highly	CG	methylated	genes.	Genes	coding	for	proteins	with	kinase	

activity,	involved	in	signal	transduction,	and	nucleotide	binding	were	among	those	which	

tended	to	be	highly	methylated,	while	proteins	functioning	in	the	thylakoid,	plastid,	and	

ribosome,	as	well	as	proteins	involved	in	primary	metabolism,	photosynthesis,	and	RNA	
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binding	tended	to	be	lowly	or	moderately	methylated	(Figure	2.7).	Similar	results	have	

been	found	in	Brachypodium,	rice	(WANG	et	al.	2014),	and	Arabidopsis	(ZILBERMAN	et	al.	

2006).		

	

Decreased	Methylation	Near	Transcription	Start	Sites	

We	looked	for	changes	in	methylation	near	gene	transcription	start	sites.	We	found	

that	CG,	CHG,	and	CHH	methylation	all	were	significantly	depleted	at	and	around	gene	start	

sites	(Figure	2.8).	This	depletion,	along	with	the	negative	interaction	term	between	up-

stream	and	gene	body	CG	methylation	on	gene	expression,	points	towards	a	role	of	

methylation	in	epigenetically	labeling	coding	genetic	regions.	Additionally,	recent	evidence	

has	shown	that	in	M.	guttatus	genetic	recombination	occurs	at	higher	frequency	near	gene	

start	sites.	In	other	systems	it	has	been	shown	that	DNA	methylation	is	negatively	

correlated	with	recombination	(MIROUZE	et	al.	2012),	and	it	may	be	that	decreased	

methylation	at	gene	start	sites	is	related	to	the	increase	in	recombination.		

Decreased	methylation	near	transcription	start	sites	(TSS)	was	one	of	the	earliest	

discovered	phenomena	of	gene	methylation	(ZILBERMAN	et	al.	2006).	However,	new	

evidence	in	M.	guttatus	(HELLSTEN	et	al.	2013)	provides	us	with	a	novel	framework	in	which	

to	view	this	pattern.	Hellsten	et	al.	(HELLSTEN	et	al.	2013)	identified	an	approximately	two-

fold	increase	in	recombination	near	gene	start	sites	(the	beginning	of	exon	1	being	most	

enriched),	and	postulated	that	this	may	be	related	to	nucleosome	depleted	open	chromatin	

at	these	regions	as	is	the	case	in	Arabidopsis	(ZHANG	et	al.	2012)	and	rice	(YU	et	al.	2002).	At	

the	time	of	their	publication	however,	there	was	no	evidence	for	a	similar	trend	in	Mimulus.	

Here,	evidence	of	depleted	methylation	near	TSS	(Table	2.1;	Figure	2.8)	provides	support	
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to	the	theory	that	open	chromatin	(unmethylated)	near	TSS	may	increase	local	

recombination	rates.	It	appears	that	at	least	in	yeast	double	stranded	breaks	occur	most	

frequently	in	open	chromatin	regions	(PAN	et	al.),	which	may	explain	the	observed	increase	

in	recombination	near	transcription	start	sites.	It	is	likely	that	the	increased	recombination	

near	TSS	is	simply	a	by-product	of	the	dual	forces	exerted	by	DNA	methylation,	one	

involved	in	gene	regulation,	and	another	limiting	double	stranded	breaks.	The	ability	for	

DNA	methylation	to	alter	both	of	these	processes	provides	an	interesting	link	between	gene	

regulation	and	DNA	recombination	that	may	or	may	not	prove	to	be	of	evolutionary	

significance.	Further	studies	linking	methylation	and	recombination	at	a	nucleotide	level	

should	further	clarify	this	trend.	

	

Transposable	Element	Methylation	

We	identified	1,411	transposable	elements	across	the	genome	ranging	in	copy	

number	from	1	to	2,380	(median	copy	number	=	7).	Percent	methylation	was	calculated	in	

each	of	three	sequence	contexts.	In	total,	34%	of	the	M.	guttatus	genome	was	estimated	to	

be	of	transposable	element	sequence,	and	methylation	levels	within	transposable	elements	

were	significantly	higher	than	that	of	genes,	and	at	similar	levels	to	inter-genic	regions	

(Table	2.1).	We	did	not	find	there	to	be	a	significant	copy	number	effect	on	TE	methylation.	

Of	the	top	25	most	common	transposable	elements	in	the	Mimulus	genome,	six	were	type	1,	

and	19	were	type	2	transposons	(Table	2.5).	

We	find	that	DNA	methylation	in	all	contexts	is	enriched	in	transposable	elements	

relative	to	genes,	however	this	is	most	significant	for	non-CG	methylation	(Table	2.1).	This	

suggests	that	both	RNA	dependent	DNA	methylation	(RdDM)	is	targeting	and	silencing	
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transposable	elements	in	M.	guttatus	as	is	this	case	in	other	angiosperms.	Found	at	2,380	

copies,	the	helB8c	family	of	helitron	elements	is	far	and	away	the	most	common	transposon	

in	the	Mimulus	genome	(more	abundant	than	the	next	seven	TE	families	combined;	Table	

2.5).	Helitrons	are	a	relatively	newly	discovered	class	of	type	2	transposable	elements	that	

propagate	through	a	rolling	circle	mechanism	that	is	still	somewhat	mysterious	(XIONG	et	al.	

2014).	One	thing	that	is	clear,	is	that	these	elements	have	been	highly	successful	in	

propagating	across	flowering	plants,	making	up	2%	of	the	Arabidopsis	genome	(HOLLISTER	

and	GAUT	2007);	a	single	family	of	helitrons	makes	up	6%	of	the	maize	genome	(XIONG	et	al.	

2014),	making	it	the	most	abundant	DNA	transposon	identified.	Here,	we	provide	evidence	

for	the	success	of	these	elements	across	the	diversity	of	flowering	plants.	

	

Conclusions	

Much	remains	unknown	about	the	gene	regulatory	information	contained	in	an	

organism’s	methylome,	but	here	we	provide	further	evidence	of	complex	interactions	

between	gene	methylation	and	expression.	DNA	methylation	may	actively	alters	gene	

expression,	itself	be	altered	by	gene	expression,	or	both	methylation	and	expression	may	

be	jointly	determined	by	a	distinct	genetic	feature.	Still	the	ability	to	explain	over	a	fifth	of	

the	variation	in	log	transformed	gene	expression	by	local	DNA	methylation,	and	basic	

genetic	architecture	(exon	length,	intron	length,	exon	number),	is	promising	and	has	

numerous	potential	applications.	Recent	efforts	have	shown	that	the	plant	methylome	is	

relatively	stable	throughout	development	(EICHTEN	et	al.	2013b),	unlike	gene	expression.	In	

this	way	methylation	at	a	gene	likely	reflects	moderately	stable	epigenetic	control	of	gene	

expression,	while	developmentally	activated	transcription	factors	and	small	RNAs	may	
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provide	highly	plastic	gene	expression	control	throughout	development.	Through	

combining	differential	methylation	analyses	across	tissue	types,	environmental	treatments,	

or	genetic	lines	with	a	modeling	approach	as	described	here;	our	understanding	of	the	role	

of	epigenetic	variation	in	gene	regulation	can	be	greatly	increased.	
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Table	2.1.	Mimulus	guttatus	methylation	across	sequence	contexts	and	genomic	regions.	

	

		

Proportion	of	cytosines	
methylated	
CG	 CHG	 CHH	

Transposable	Elements	 0.73	 0.36	 0.063	
Gene	Body	 0.56	 0.038	 0.012	
1st	500bp	of	Gene	Body	 0.28	 0.032	 0.019	
Up-stream	Regulatory	 0.35	 0.11	 0.027	
Inter-Genic	Regions	 0.75	 0.45	 0.072	
Total	 0.72	 0.365	 0.061	
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Table	2.2.		Summary	of	REML	genetic	architecture	and	methylation	fit	on	log	transformed	
gene	expression.	
	
	
	
	 		
R-Square	 0.202	
R-Square	Adj.	 0.200	
Root	Mean	Square	Error	 0.641	
Mean	of	Response	 2.483	
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Table	2.3.		Analysis	of	variance	in	gene	expression	predictive	model.	
	
	
Source	 DF	 Sum	of	Squares	 Mean	Square	 F	Ratio	
Model	 28	 1764.7903	 63.0282	 153.6	
Error	 17014	 6981.5210	 0.4070	 Prob	>	F	
C.	Total	 17042	 8746.3113	 	 <.0001*	
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Table	2.4.	Sorted	estimate	of	parameter	effects	on	log	transformed	gene	expression.	
	
Positive	Terms	 Estimate	 Std	Error	 t	Ratio	 Prob>|t|	
Intron	Length	 0.3472	 0.0117	 29.75	 <.0001	
Gene	Body	CHG2	 0.0874	 0.0082	 10.64	 <.0001	
Number	of	Exons*Intron	
Length	 0.0793	 0.0081	 9.74	 <.0001	
Exon	Length	 0.0767	 0.0102	 7.55	 <.0001	
Exon	Length*	Intron	Length	 0.0553	 0.0070	 7.86	 <.0001	
Gene	Body	CG	*	Exon	Length	 0.0392	 0.0089	 4.4	 <.0001	
Gene	Body	CG2	*	Exon	Length	 0.0303	 0.0069	 4.37	 <.0001	
Up-Stream	CHH		 0.0275	 0.0055	 4.99	 <.0001	
Gene	Body	CG*Gene	Body	CHH	 0.0244	 0.0064	 3.78	 0.0002	
Down-stream	CHH	 0.0185	 0.0050	 3.69	 0.0002	
Up-stream	CHH*	Percent	CG	 0.0167	 0.0051	 3.28	 0.0011	
Intron	Length3	 0.0105	 0.0007	 14.4	 <.0001	
Exon	Length2	*	Number	of	
Exons	 0.0074	 0.0009	 8.19	 <.0001	
Negative	Terms	 		
Gene	Body	CHG	 -0.3273	 0.0197	 -16.58	 <.0001	
Intron	Length2	 -0.1611	 0.0076	 -21.18	 <.0001	
Gene	Body	CG2	 -0.0980	 0.0092	 -10.62	 <.0001	
Gene	Body	CG	 -0.0720	 0.0118	 -6.09	 <.0001	
Exon	Length	*	Number	of	
Exons	 -0.0662	 0.0076	 -8.72	 <.0001	
Gene	Body	CHH	 -0.0451	 0.0076	 -5.93	 <.0001	
Number	of	Exons	 -0.0308	 0.0112	 -2.75	 0.0059	
Percent	CG3	 -0.0277	 0.0059	 -4.73	 <.0001	
Up-Stream	CG	 -0.0274	 0.0054	 -5.06	 <.0001	
Exon	Length2	 -0.0205	 0.0033	 -6.28	 <.0001	
Gene	Body	CHG	*	Exon	Length	 -0.0198	 0.0058	 -3.41	 0.0007	
Up-stream	CG*	Up-stream	CHH	 -0.0188	 0.0058	 -3.23	 0.0012	
Up-stream	CG*	Gene	Body	CG	 -0.0170	 0.0052	 -3.28	 0.001	
Exon	Length	*	Intron	Length	*	
Number	of	Exons	 -0.0118	 0.0016	 -7.21	 <.0001	
Gene	Body	CHG3	 -0.0063	 0.0008	 -7.95	 <.0001	
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Table	2.5.	Transposable	element	frequencies,	classes,	and	methylation.	
	
	 Percent	Methylation	 	
ID	 Copies	 CG	 CHG	 CHH	 Family	 Class	
helB8c	 2380	 0.809	 0.473	 0.052	 Helitron	 2	
MULE_MITE1c	 674	 0.627	 0.263	 0.102	 MITE	 2	
Copia1b	 424	 0.780	 0.437	 0.058	 Copia	 1	
helD8b	 402	 0.712	 0.357	 0.055	 Helitron	 2	
MULE_MITE2b	 245	 0.633	 0.285	 0.077	 MULE	 2	
pogo_MITE2b	 203	 0.738	 0.281	 0.071	 MITE	 2	
MULE_MITE16
b	 200	 0.713	 0.207	 0.070	 MULE	 2	
hAT_MITE1	 197	 0.782	 0.294	 0.051	 MITE	 2	
MULE_na62	 165	 0.768	 0.359	 0.064	 MULE	 2	
MULE_MITE1a	 158	 0.720	 0.250	 0.071	 MULE	 2	
LARD4	 155	 0.793	 0.442	 0.081	 LARD	 1	
hAT_na66a	 151	 0.869	 0.276	 0.042	 hAT	 2	
Tourist6c	 151	 0.634	 0.259	 0.071	 MITE	 2	
MuDR8	 150	 0.791	 0.492	 0.089	 MuDR	 2	
MULE_na13a	 145	 0.752	 0.400	 0.068	 MULE	 2	
Copia1a	 143	 0.717	 0.374	 0.045	 Copia	 1	
Copia2	 137	 0.685	 0.494	 0.085	 Copia	 1	
SINE1a	 134	 0.685	 0.293	 0.112	 SINE	 1	
Gypsy8	 128	 0.605	 0.228	 0.033	 Gypsy	 1	
MULE_na13b	 128	 0.449	 0.260	 0.058	 MULE	 2	
helF3c	 119	 0.737	 0.362	 0.067	 Helitron	 2	
Jittery7	 116	 0.639	 0.260	 0.053	 Mu	 2	
Toursit4c	 115	 0.781	 0.315	 0.085	 MITE	 2	
Gypsy4	 111	 0.818	 0.402	 0.051	 Gypsy	 1	
MULE_MITE25
b	 109	 0.626	 0.151	 0.042	 MULE	 2	
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Figure	2.1.	Interspecific	comparison	of	plant	DNA	methylation	levels.	A	comparison	of	
global	DNA	methylation	levels	in	CG	(red),	CHG	(green),	and	CHH	(blue)	sequence	contexts	
found	in	Mimulus	guttatus	compared	with	those	of	Arabidopsis	thaliana,	Glycine	max	
(SCHMITZ	et	al.	2013a),	Brachypodium	distachyiom	(TAKUNO	and	GAUT	2013),	Oryza	sativa	(LI	
et	al.	2012),	Solanum	lycopersicum	(ZHONG	et	al.	2013),	and	Zea	mays	(GENT	et	al.	2013).	
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Figure	2.2.	DNA	methylation	across	the	Mimulus	guttatus	genome.	DNA	methylation	
across	the	14	Mimulus	guttatus	linkage	groups	(putative	chromosomes)	in	all	three	
sequence	contexts:	CG	(red),	CHG	(green),	and	CHH	(blue).	Centromeric	repeat	densities,	
adapted	from	(FLAGEL	et	al.	2014),	are	shown	along	the	X-axis	(darker	bars	indicate	higher	
repeat	density).	Areas	with	higher	repeat	density	tend	to	also	have	higher	DNA	
methylation.	A	smoother	line	(WICKHAM	2009)	was	fit	across	1kb	methylation	averages.		
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Figure	2.3.	Variation	in	methylation	and	expression	across	chromosomes.	A	heatmap	
showing	variation	in	gene	expression	and	methylation	across	the	14	Mimulus	guttatus	
putative	chromosomes.	The	14	chromosomes	clustered	into	two	large	groups,	those	with	
generally	high	methylation	and	low	gene	expression	(top	cluster,	red	dendogram),	and	
those	exhibiting	the	opposite	pattern	(bottom	cluster,	green	dendogram).	On	the	heat	map,	
red	indicates	high	values	and	blue	indicates	low	values	of	methylation	or	gene	expression.	
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Figure	2.4.	Correlation	matrix	between	forms	of	methylation	at	individual	genes.	
Clouds	represent	density,	and	lines	show	the	slope	of	the	correlation.	Green	lines	indicate	
forms	of	methylation	with	a	positive	correlation,	while	red	represents	negative	correlation.	
Numbers	represent	the	Pearson	correlation	(r)	value,	bolded	numbers	highlight	
correlations	with	an	r	>	0.35.	All	correlations	were	found	to	be	statistically	significant	
(n=17,038,	p<0.05).		
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Figure	2.5.	Correlations	between	DNA	methylation	and	gene	expression.	A	single	star	
represents	a	significant	linear	correlation,	two	stars	a	significant	second-order	correlation,	
and	three	stars	a	third	order	correlation.	The	red	dashed	lines	represent	the	means,	the	
black	line	represents	the	regression	line,	and	the	blue	line	represents	95%	confidence	
intervals.	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

1
2
3
4
5

0

0.
2

0.
4

0.
6

0.
80

0.
2

0.
4

0.
6

0.
8 0

0.
2

0.
4

0.
6

0.
8

1
2
3
4
5

1
2
3
4
5

Up-Stream Gene Body Down-Stream

Percent Methylation

CG

CHG

CHHlo
g(

G
en

e 
Ex

pr
es

sio
n)

**

* **

*

**

*

**

***

***



	 76	

Figure	2.6.	DNA	methylation	modeling	to	predict	gene	expression.	A	visual	depiction	of	
our	simplified	model	showing	the	effect	of	gene	body	CG	methylation	and	an	increasing	
complexity	of	interaction	terms	on	gene	expression.	A)	A	scatterplot	comparing	Z-
transformed	gene	body	CG	methylation	values	with	log(gene	expression)	values.	The	black	
line	shows	the	linear	term,	green	line	includes	both	the	linear	and	quiadratic	term,	and	the	
blue	line	includes	linear,	quadratic,	and	cubic	terms.	B)	Interaction	plot	depicting	the	
interaction	between	gene	CG	methylation	and	exonlength,	up-stream	CHH	methylation,	
gene	body	CHH	methylation,	and	gene	body	CG	methylation	on	gene	expression.	Summed	
terms	across	these	four	terms	are	considered	ranging	from	-1.6	(dark	purple)	to	1.6	
(yellow).	Points	represent	actual	genes	CG	gene	body	methylation,	gene	expression,	and	
their	color	represents	their	interaction	sum	on	the	same	scale	as	the	model	colors.	C)	The	
second	order	interaction	term	of	squared	gene	body	CG	methylation	by	exon	length	is	
added	to	the	model	depicted	in	B.		As	exon	length	increases	(goes	from	red	to	blue)	gene	
body	CG	methylation	is	found	to	have	a	more	positive	effect	on	gene	expression.	Points	
represent	genes,	and	colors	represent	the	exon	length	of	these	genes	on	the	same	scale	as	
the	model	colors.	D)	The	independent	effect	of	exon	length	on	gene	expression	is	added	to	
the	model	depicted	in	C.		The	shape	of	the	lines	does	not	change,	however	predicted	gene	
expression	is	altered	(the	lines	move	up	or	down	on	the	y-axis)	depending	on	the	predicted	
effects	of	exon	length	on	gene	expression.		
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Figure	2.7.	Gene	Ontology	classes	over	and	underrepresented	in	highly	gene	body	
methylated	genes.	Genes	Ontology	terms	significantly	enriched	and	depleted	in	genes	in	
the	top	10%	for	gene	body	CG	methylation.	X-axis	shows	the	percent	of	genes	in	both	the	
high	CG	methylated	portion	(blue)	as	well	as	the	remainder	of	the	transcriptome	(red)	that	
contained	the	given	GO	terms.	Text	color	represents	the	class	of	GO	term:	blue-molecular	
functions,	grey-biological	processes,	and	green-cellular	component.	
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Figure	2.8.	DNA	methylation	around	transcriptional	start	sites.	Around	gene	start	sites,	
and	persisting	into	the	first	500	base	pairs	of	the	gene	body,	we	observe	a	significant	drop	
in	DNA	methylation.	For	CG	(p-value=6.45x10-55),	CHG	(p=3.38x10-100),	and	CHH	
(p=4.61x10-308)	methylation	was	significantly	reduced	in	the	first	500bp	of	the	gene	
relative	to	the	up-stream	regions.		Both	CG	(p=3.55x10-138)	and	CHG	(p=4.04x10-11)	
methylation	then	significantly	increases	over	the	next	500	bp,	while	for	CHH	it	continued	to	
decline	(p=8.93x10-10).	
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CHAPTER	3	

	
Differential	methylation	in	the	offspring	of	wounded	Mimulus	guttatus	
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Abstract	

	 The	offspring	of	wounded	Mimulus	guttatus	plants	differentially	express	hundreds	

of	 genes	 and	 produce	 leaves	 with	 greater	 numbers	 of	 trichomes.	 Here	 we	 utilize	 whole	

genome	bisulfite	 sequencing	 in	 the	progeny	of	 damaged	and	 control	 plants	 to	 assess	 the	

potential	 role	 of	 differential	 methylation	 on	 the	 previously	 observed	 patterns	 of	 gene	

expression.	 	We	identify	thousands	of	genomic	regions	of	differential	methylation,	as	well	

as	 an	 increase	 in	 gene	 methylation	 variation	 in	 the	 progeny	 of	 damaged	 plants.	 	 A	

significant	 overabundance	 of	 these	 differentially	 methylated	 regions	 overlap	 with	

differentially	 expressed	 genes	 coding	 and	 up-stream	 regions,	 suggesting	 a	 role	 of	

differential	 methylation	 in	 transgenerationally	 plastic	 gene	 expression.	 	 Through	

differentiating	 between	 CG,	 CHG,	 and	 CHH	 methylation	 we	 find	 evidence	 that	 different	

classes	of	methylation	 regulate	different	 classes	of	 transgenerationally	plastic	 genes,	 and	

identify	likely	candidate	genes	that	function	in	transgenerational	plasticity.		
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Introduction		

Phenotypic	 plasticity,	 or	 the	 ability	 to	 modify	 development	 according	 to	 environmental	

cues,	 is	 of	 vital	 importance	 in	 the	 success	 of	 life	 in	 response	 to	 the	 constantly	 changing	

abiotic	 and	 biotic	 world	 around	 us.	 	 While	 the	 molecular	 mechanisms,	 evolutionary	

implications,	and	diversity	of	plastic	phenotypic	responses	to	the	environment	have	been	

well-studied,	the	ability	of	a	subset	of	these	signals	to	be	transmitted	to	the	next	generation	

remains	poorly	understood	and	skeptically	viewed	(HEARD	and	MARTIENSSEN	2014).		A	great	

deal	of	 this	skepticism	is	due	 its	 ties	with	“Lamarckianism”,	but	other,	more	scientifically	

grounded	 concerns,	 also	 linger.	 	 One	 of	 these	 is	 that	 their	 contribution	 to	 fitness	 and	

phenotypic	 variation	 in	 nature	 is	 poorly	 understood.	 	 Through	 the	 budding	 field	 of	

ecological	epigenetics	 (BOSSDORF	et	al.	2008;	KILVITIS	et	al.	2014)	 these	questions	must	be	

addressed	 using	 a	 combination	 of	 field,	 greenhouse,	 and	 common	 garden	 techniques.	

Another	 weakness	 in	 the	 field	 is	 the	 lack	 of	 a	 demonstrated	 molecular	 mechanism	 to	

explain	 this	 inheritance.	 In	 this	 study	we	 identify	 thousands	 of	 differentially	methylated	

regions	that	provide	evidence	for	an	epigenetic	role	in	the	transmission	of	environmental	

information	

In	 response	 to	 varying	 biotic	 (AGRAWAL	 et	 al.	 1999;	 VAN	DAM	 and	 BALDWIN	 2001;	

AGRAWAL	2002;	HOLESKI	2007;	HOLESKI	et	al.	2010;	SCOVILLE	et	al.	2011;	HOLESKI	et	al.	2012;	

LAU	 2012;	 LUNA	 et	 al.	 2012;	 RASMANN	 et	 al.	 2012;	 SLAUGHTER	 et	 al.	 2012;	 COLICCHIO	 et	 al.	

2014),	 and	 abiotic	 (DURRANT	 1962;	 BLÖDNER	 et	 al.	 2007;	 GALLOWAY	 and	 ETTERSON	 2007;	

BOYKO	 et	al.	 2010;	 VERHOEVEN	 et	al.	 2010;	 HERMAN	 and	 SULTAN	 2011;	 HERMAN	 et	al.	 2012;	

VERHOEVEN	 and	 VAN	 GURP	 2012a)	 conditions	 in	 the	 parent	 generation,	 offspring	 fitness,	

phenotype,	gene	expression,	and	methylation	have	all	been	found	to	vary.	For	example,	in	
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Mimulus	guttatus,	progeny	plants	 increase	 trichome	production	and	differentially	express	

over	one	thousand	genes	 in	response	 to	parental	wounding	(HOLESKI	2007;	SCOVILLE	et	al.	

2011;	 COLICCHIO	 et	 al.	 2014).	 	 The	 progeny	 of	 drought	 stressed	 Polygonum	 persicaria	

individuals	alter	seedling	growth	to	increase	fitness	in	dry	conditions	(HERMAN	et	al.	2012).	

Maternal	 light	environment	 influences	offspring	growth	and	 increases	offspring	 fitness	 in	

similar	 environments	 in	 Campanulastrum	 americanum	 (GALLOWAY	 and	 ETTERSON	 2007).		

Finally,	 response	 to	 a	wide	 variety	 of	 environmental	 signals	 in	 the	 progeny	 of	 apomictic	

dandelions	 (Taraxacum	officinale)	 increases	DNA	methylation	 variation	 (VERHOEVEN	 et	al.	

2010)	 and	 growth	 (VERHOEVEN	 and	 VAN	GURP	 2012a).	 	 Additionally,	 evidence	 in	 Solanum	

lycopersicum	 and	 Arabidopsis	 thaliana	 suggests	 that	 key	 players	 in	 the	 plant	 hormone	

response	 and	 epigenetic	 regulatory	 pathways	 are	 vital	 for	 at	 least	 a	 portion	 of	 these	

transgenerational	effects	(RASMANN	et	al.	2012).	While	this	is	a	promising	start,	the	specific	

loci	that	control	transgenerational	inheritance	and	the	timing	and	mechanism	of	germ	line	

reiteration	remain	unknown.	

DNA	cytosine	methylation	acts	alongside	histone	modifications	and	small	RNAs	as	

key	epigenetic	regulators	through	a	number	of	linked	pathways	in	which	an	ever-growing	

number	of	enzymes	and	molecules	(EICHTEN	et	al.	2014;	HUFF	and	ZILBERMAN	2014;	MATZKE	

and	MOSHER	 2014;	 HOLOCH	 and	MOAZED	 2015;	 LI	 et	 al.	 2015)	 alter	 the	 transcription	 and	

translation	 of	 genes	 into	 proteins	 (along	 with	 traditional	 protein	 transcription	 factors).		

DNA	 methylation	 can	 occur	 on	 any	 cytosine	 nucleotide	 across	 the	 genome,	 but	 the	

mechanisms	 that	 propagate	methylation	 and	 the	 effect	 they	 have	 on	 genome	 regulation	

vary	between	those	in	a	CG,	CHG,	and	CHH	(where	H	is	any	nucleotide	that	is	not	G)	context	

(BARTEE	et	al.	2001;	CAO	and	JACOBSEN	2002;	KANKEL	et	al.	2003;	CHAN	et	al.	2006;	LAW	and	
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JACOBSEN	 2010;	 JONES	 2012;	 LI	 et	 al.	 2012;	 LAW	 et	 al.	 2013b;	 HUFF	 and	 ZILBERMAN	 2014;	

STROUD	et	al.	2014).	 	While	all	 three	of	 these	 types	of	methylation	play	a	role	 in	silencing	

transposable	 elements	 (TEs),	 their	 role	 in	 regulating	 gene	 expression	 is	 much	 more	

variable.	Not	only	does	the	context	of	the	methylation	(CG,	CHG,	CHH)	impact	their	role	in	

gene	 regulation,	 so	 to	 does	 the	 location	 of	 methylation	 relative	 to	 the	 gene	 (upstream,	

within	an	intron	or	exon,	down-stream,	etc.)	(YUAN	et	al.	2007;	LI	et	al.	2008;	COLICCHIO	et	al.	

2015a;	KARIÑHO-BETANCOURT	et	al.	2015).	CG	methylation	is	the	most	prevalent	form	of	DNA	

methylation	 (occurring	 on	 over	 50%	 of	 CG	 sequences	 in	 many	 cases),	 and	 within	 gene	

bodies	it	has	a	very	complex	relationship	with	gene	expression	in	which	surrounding	DNA	

methylation,	 gene	 length,	 and	 other	 factors	 alter	 the	 role	 of	 CG	 methylation	 in	 gene	

regulation	(ZILBERMAN	et	al.	2006;	WANG	et	al.	2014;	COLICCHIO	et	al.	2015a).	However,	when	

methylation	 occurs	 in	 up-stream	 regulatory	 regions	 it	 appears	 to	 directly	 suppress	

expression	 (KILBY	 et	 al.	 1992;	 METTE	 et	 al.	 2000;	 ZILBERMAN	 et	 al.	 2006;	 COLICCHIO	 et	 al.	

2015a).			

CHG	and	CHH	methylation	are	often	grouped	as	“non-CG”	methylation,	and	tend	to	

be	found	at	significantly	lower	levels	across	the	genome	than	CG	methylation	(ZHANG	et	al.	

2006;	 CHODAVARAPU	et	al.	 2012;	 LI	et	al.	 2012;	TAKUNO	 and	GAUT	2013;	 ZHONG	et	al.	 2013;	

SEYMOUR	et	al.	2014;	WANG	et	al.	2014;	COLICCHIO	et	al.	2015a).	 	 	CHG	and	CHH	methylation	

are	 propagated	 and	 reiterated	 by	 a	 partially	 overlapping	 set	 of	 enzymes	 and	molecules,	

often	 initiated	by	24-nt	small	 interfering	(si)	RNAs(LAW	and	 JACOBSEN	2010;	MOLNAR	et	al.	

2010;	 GENT	 et	 al.	 2013;	 LAW	 et	 al.	 2013b;	MATZKE	 and	MOSHER	 2014;	 STROUD	 et	 al.	 2014;	

HOLOCH	 and	MOAZED	 2015).	 Both	 types	 of	 non-CG	 gene	 body	methylation	 are	 associated	

with	transcriptional	silencing	and	decreased	expression.		The	majority	of	epigenetic	marks	
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appear	 to	be	 reset	 during	 gamete	 formation	 in	plants	 (LANG-MLADEK	et	al.	 2010),	 but	 the	

recent	discovery	that	si-RNAs	are	loaded	into	pollen	granules	(CALARCO	et	al.	2012)	and	are	

phloem	mobile	and	can	mediate	methylation	in	recipient	cells	(LEWSEY	et	al.	2016)	presents	

one	possible	mechanism	 through	which	environmentally	 induced	epigenetic	marks	could	

be	reinstated	and	transmitted	between	generations.	

In	 this	 paper,	 I	 investigate	 the	 role	 of	 differential	methylation	 in	 transgeneration	

induction	in	response	to	leaf	damage	in	M.	guttatus	(HOLESKI	2007).		Since	Holeski’s	initial	

studies	of	trichome	induction,	the	induction	effect	has	been	shown	to	be	transmitted	both	

paternally	 and	 maternally	 (In	 Press,	 Scoville	 et	 al.,	 2016),	 partially	 dependent	 on	 DNA	

methylation	 (In	 Press,	 Scoville	 et	 al.	 2016),	 persist	 through	 at	 least	 two	 generations	 (In	

Press,	 Scoville	 et	 al.,	 2016),	 and	 involves	 differential	 expression	 of	 over	 900	 genes	

(COLICCHIO	 et	al.	 2015b).	 	 Trangenerational	 induction	 also	 has	 significant	 effects	 on	 plant	

resistance	 to	 herbivory	 in	 the	 field	 in	 M.	 guttatus	 (In	 Submission,	 Colicchio	 2016).		

Additionally,	 a	 recently	 sequenced	 methylome	 has	 allowed	 us	 to	 study	 the	 relationship	

between	 methylation	 and	 expression	 in	M.	 guttatus	 (COLICCHIO	 et	 al.	 2015a).	 With	 this	

newfound	 molecular	 understanding	 of	 the	 interplay	 between	 methylation	 and	 gene	

expression	 we	 seek	 to	 identify	 how	 parental	 environment	 alters	 offspring	 methylome.	

Here,	 I	 present	 whole-genome	methylome	 data	 from	 both	 the	 progeny	 of	 damaged	 and	

control	 plats,	 and	 examine	 patterns	 of	 differential	 methylation	 alongside	 previously	

published	gene	expression	results.		
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Methods	

Plant	material,	experimental	design,	and	trichome	phenotyping	

A	single	Mimulus	guttatus	RIL	94	(F8	generation)	parent	plant	was	grown	under	non	

stress	conditions	in	the	University	of	Kansas	greenhouse	in	the	same	manner	as	described	

in	the	complementary	gene	expression	study	(COLICCHIO	et	al.	2014).		Briefly,	selfed	seed	

from	this	individual	was	split	randomly	into	damage	and	control	treatment	groups.		For	

damage	treatment,	we	punched	two	holes	of	c.	6mm	diameter	in	each	at	the	developmental	

point	when	the	next	leaf	had	expanded.		Five	wounded	and	5	control	plants	were	self	

fertilized	to	propagate	seed	for	the	transgenerational	effect	study	described	here.		The	

progeny	of	these	individuals	were	grown	until	the	second	leaf	pair	had	expanded	to	one	

centimeter	in	width,	at	which	point	each	leaf	from	the	second	node	was	collected	and	flash	

frozen	in	liquid	nitrogen	within	one	minute	of	removal	from	the	plant.			

	

DNA	extraction	and	library	preparation	

We	extracted	DNA	from	the	progeny	of	five	damaged	and	five	control	individuals	

using	a	CTAB	protocol	(HOLESKI	et	al.	2013a).	From	these	samples,	we	generated	

sequencing	template	for	whole	genome	bisulfite	sequencing	(WGBS)	following	the	PBAT	

(Post-Bisulfite	Adaptor	Tagging)	protocol	revision	12	(MIURA	et	al.	2012).	With	1	ng	of	

unmethylated	lambda	DNA	obtained	from	Promega	used	as	a	spike-in	control	for	

conversion	efficiency,	between	55	and	100	ng	of	genomic	DNA	from	each	individual	was	

treated	with	bisulfite	using	EZ	DNA	Methylation	kit	from	Zymo	Research.	Two	rounds	of	

random	primer	extension	for	tagging	bisulfite	treated	DNA	with	adaptors	were	performed	



	 86	

using	primers	for	paired-end	library	construction.	Unique	adaptors	were	ligated	onto	each	

library	to	allow	for	down-stream	de-multiplexing.		The	concentration	of	templates	was	

determined	by	qPCR	with	Library	Quantification	Kits	from	KAPA	biosystems,	and	due	to	

low	library	quantities,	one	control	individual	was	omitted	from	sequencing.		Two	lanes	of	

100	cycle	reactions	on	HiSeq	2500	rapid-run	were	assigned	for	the	library	sequencing	at	

the	University	of	Kansas	Genome	Sequencing	Core	for	these	and	three	other	PBAT	WGBS	

samples	(11	samples	per	lane).		Each	sample	was	sequenced	in	both	lanes.	

	

Read	Mapping	

We	used	the	software	BMap	(MIURA	et	al.	2012)	(http://itolab.med.kyushu-

u.ac.jp/BMap/index.html)	to	map	bisulifte	treated	reads	to	a	resequenced	M.	guttatus	RIL	

94	reference	genome	created	v2.0	reference	genome.	In	short,	BMap	first	searches	

candidate	genomic	loci	for	each	read	in	two	duplicated	genome	sequences,	one	with	every	

C	in	the	genome	converted	to	a	T	(C2T),	and	one	with	G	to	A	(G2A),	using	an	approach	

called	adaptive	seed	(KIEŁBASA	et	al.	2011).	Next	BMap	creates	pairwise	alignments	

between	the	read	and	original	DNA	sequence	of	every	candidate	loci,	and	calculates	scores	

for	each	alignment	allowing	mismatches	between	T	in	the	reads	with	C	in	the	reference.	

Finally	an	alignment	with	the	highest	score	is	reported	for	each	read.	We	used	default	

parameters	for	mapping	with	BMap,	as	previously	found	ideal	and	described	previously	

(COLICCHIO	et	al.	2015a).	Using	alignments	exported	by	BMap,	methylation	status	for	every	

cytosine	in	every	read	was	called,	and	counts	both	supporting	the	methylated	and	

unmethylated	state	are	assigned	for	every	cytosine	residue	of	the	reference	genome.	
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Methylation	levels	for	CG,	CHG	and	CHH	contexts	are	exported	to	different	files	to	allow	for	

independent	analysis.	

	

Global	Methylation	Analysis	

In	order	to	compare	global	methylation,	we	used	a	change	point	detector	to	scan	the	

genome	of	each	individual,	to	identify	regions	where	average	CG	methylation	

changes(YOKOYAMA	et	al.	2015).		This	results	in	the	partitioning	of	the	genome	into	blocks	

ranging	from	tens	to	hundreds	of	KBs	long	in	which	methylation	rates	are	relatively	

constant.		Using	ggplot	we	constructed	plots	showing	the	length	and	size	distribution	of	

these	methyl-regions	(MDM	plots)	for	each	individual(YOKOYAMA	et	al.	2015).			

	

	

Gene	Methylation	Analysis		

Using	the	same	methodology	as	previously	described	we	calculated	percent	

methylation	within	upstream	and	gene	body	regions	for	each	of	the	24,130	genes	in	the	M.	

guttatus	v2.0	annotation(COLICCHIO	et	al.	2015a).		For	each	gene	we	calculated	the	within-

group	(Control	and	Damage)	standard	deviation	of	gene	body	methylation	for	all	three	

methylation	types	using	average	methylation	across	all	nucleotides	within	a	gene	for	a	

given	individual.		A	paired	t-test	was	performed	to	compare	differences	between	standard	

deviation	within	the	damage	and	control	treatment	group.	Methylation	values	for	each	

gene	of	the	nine	individuals	were	used	to	perform	PCA	analysis	of	the	individuals.	This	was	

done	distinctly	for	CG	and	CHH	methylation.		Additionally,	within	treatment	group	standard	

deviation	was	calculated	for	each	gene	for	each	type	of	methylation.	A	paired	t-test	was	
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performed	on	these	standard	deviation	values	to	test	if	one	group	had	more	variable	gene	

body	methylation	than	the	other.		Plots	were	constructed	using	ggplot	to	compare	the	

amount	of	methylation	variation	for	each	gene	in	damaged	vs.	control	individuals.		

To	test	for	a	relationship	between	changes	in	methylation	between	gene	body	CG,	

CHG,	and	CHH,	as	well	as	up-stream	CG	methylation	types	we	calculated	the	pairwise	

correlation	between	difference	in	mean	methylation	for	each	gene	between	the	offspring	of	

damaged	and	control	plants.		Methylation	values	for	each	sequence	context	were	Z-

transformed	prior	to	this	analysis	to	normalize	the	data.			

Using	transposable	element	position	information	for	previous	analyses,	we	

determined	percent	methylation	across	cytosine	sequence	contexts	for	the	transposable	

elements	in	each	individual.		We	merged	the	read	counts	that	mapped	to	the	same	species	

of	transposable	element,	and	used	a	GLM	with	logit	link	function	to	call	differential	

methylation	between	individuals	in	the	damage	vs.	control	treatment	group.		Different	

families	of	TE	were	separated	after	analysis,	and	patterns	of	differential	methylation	were	

analyzed	for	each	family.	

	

Identification	of	Differentially	Methylated	Regions:	

We	used	the	R	package	DSS	to	identify	differentially	methylated	loci	between	

damaged	and	treatment	groups.		We	performed	this	procedure	separately	for	CG,	CHG,	and	

CHH	methylation,	as	well	as	a	combined	file	to	identify	regions	that	showed	general	

differential	methylation	across	the	three	methylation	types.	We	used	the	function	DML	to	

identify	individual	loci,	and	then	the	“callDMR”	function	to	identify	differentially	

methylated	regions,	and	merge	nearby	differentially	methylated	regions	into	larger	ones.	
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Default	settings	were	used,	smoothing	was	turned	on,	and	a	minimum	region	length	was	

set	to	20bp,	and	p.threshold	to	0.01.	We	only	considered	regions	from	which	the	absolute	

value	of	the	sum	of	the	test	statistics	within	the	differentially	methylated	region	was	

greater	than	or	equal	to	30.		This	was	done	to	enrich	our	set	of	differentially	methylated	

regions	for	both	larger	regions,	and	those	for	which	there	was	more	evidence	that	the	

region	was	differentially	methylated	between	the	two	groups.	

Custom	scripts	along	with	BEDtools	were	used	to	identify	genomic	features	that	

overlap,	or	were	within	1kb	down-stream	of	differentially	methylated	regions.	When	

differentially	methylated	regions	were	located	within	genes	we	broke	the	differential	

methylation	position	down	further	by	whether	introns	or	exons	composed	of	over	50%	of	

the	region.			

Contingency	tables	were	constructed	with	grouping	based	on	the	presence/absence	

of	an	overlapping	differentially	methylated	region	and	differential	expression.		Chi-square	

tests	were	performed	for	these	tables,	and	follow	up	contingency	tests	were	performed	

based	on	direction	of	significant	expression	and	methylation.	Gene	Ontology	enrichment	

analyses	and	KEGG	mapping	were	performed	for	genes	overlapping	differentially	

methylated	regions	using	the	software	Blast2GO.	

	

Results	

	 In	the	offspring	of	damaged	and	control	plants,	the	average	methylation	was	71.8%	

and	67.7%	in	a	CG	context,	38.7%	and	32.5%	in	CHG,	and	14.6%	and	13.2%	in	CHH	

respectively	(Appendix	11).		The	offspring	of	one	control	plant	(OC2)	had	particularly	low	

inter-genic	methylation	in	all	sequence	contexts,	lowering	control	group	average	
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methylation	(Appendix	11).	Similar	MDM	plots	for	CG	methylation	across	the	all	plants	

suggest	that	global	epigenetic	regulation	is	not	altered	in	the	offspring	of	damaged	plants	

(Appendix	12).			In	both	damaged	and	control	individuals,	large	1kb-20kb	regions	of	75%-

95%	methylation,	and	smaller	250bp-5kb	regions	of	less	than	20%	methylation	

predominate	across	the	genome	(Appendix	12).	

	 Across	treatment	groups,	gene	body	variation	was	higher	in	the	offspring	of	

damaged	plants	for	all	forms	of	methylation.		The	most	pronounced	shift	was	found	for	CG	

methylation	(22.8%	higher	standard	deviation	for	gene	body	methylation,	Figure	3.1a),	

followed	by	CHG	(17.8%,	Figure	3.1b),	and	CHH	(11.8%,	Figure	3.1c)	methylation.		This	

may	explain	the	observed	increase	in	gene	expression	variation	in	the	offspring	of	damaged	

vs.	undamaged	plants	(mean	standardized	variation	increase	of	6.7%,	Figure	3.1d).		This	

shift	seems	to	be	the	result	of	a	general	trend	towards	elevated	variance	rather	than	a	

subset	of	genes	showing	large	scale	variance	increases	(Figure	3.1	a:d).		

	 The	direction	and	magnitude	of	percent	change	in	methylation	for	the	three	

contexts	of	methylation	were	significantly	correlated	with	each	other	(CHG/CHH:	r=0.361,	

p<0.0001,	CG/CHG:	r=0.280,	p<0.0001,	CG/CHH:	r=0.195,	p<0.0001).	Up-stream	CG	

methylation	had	a	slightly	positive	correlation	with	gene	body	CG	methylation	(r=0.0233,	

p=0.008),	and	a	slightly	positive,	but	non-significant	correlation	with	both	types	of	non-CG	

methylation.		There	was	no	general	relationship	between	the	direction	of	change	of	

methylation	of	a	gene	and	the	gene	expression	response	of	that	gene.	

	

Transposable	Element	Methylation	
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	 Transposable	element	methylation	was	quite	plastic	in	response	to	parental	

wounding.	205	of	1385	transposable	elements	considered	in	this	study	were	differentially	

methylated	in	at	least	one	sequence	context.	Change	in	direction	was	positively	correlated	

for	all	three	sequence	contexts	(CG/CHG:	r=0.317,	p<0.0001,	CG/CHH:	r=0.132,	p<0.0001,	

CHG/CHH:	r=0.373,	p<0.0001).	For	CG,	CHG,	and	CHH	72,	63,	and	101	transposable	

elements	respectively	were	differentially	methylation	with	48,	53,	and	71	having	increased	

methylation	in	the	offspring	of	damaged	plants,	and	24,	10,	and	30	having	decreased	

methylation	(Figure	3.2).		In	29/34	cases	in	which	a	TE	was	differentially	methylated	for	

multiple	sequence	contexts,	the	direction	of	change	was	the	same	between	contexts.		

Standard	least	squares	suggested	that	there	was	a	significant	effect	of	transposon	family	on	

the	change	of	CG	methylation	(DF=15,	SS=0.48,	F=1.84,	p=0.026)	in	the	offspring	of	

wounded	plants,	but	not	CHG	or	CHH	methylation.		

	 The	offspring	of	wounded	plants	had	on	average	slightly	but	significantly	lower	CG	

TE	methylation	(OD:	71.5%,	OC:	71.7%,	t-ratio=3.13,	p=0.0018),	and	a	highly	significant	

increase	in	standard	deviation	of	methylation	between	individuals	(OD:0.041,	OC:0.024,	t=-

24.81,	p<0.0001)	.		After	performing	an	arcsin	square	root	transformation	(angular	

transformation)	further	analyses	were	performed	on	the	transformed	TE	methylation	

levels.	Least	squares	regression	identified	significant	negative	first	and	second	order	effects	

of	average	methylation	on	change	in	variance	in	the	progeny	of	damaged	plants	(F=113.4,	

p<0.0001,	Figure	3.3a).	This	leads	to	maximum	predicted	increases	in	variation	at	mean	

methylation	levels	of	42%,	while	more	highly	and	lowly	methylated	TEs	tend	to	have	

similar	levels	of	variation	between	the	offspring	of	wounded	and	control	plants.		

Additionally,	lowly	methylated	TEs	tend	to	have	decreased	methylation,	while	highly	
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methylated	TEs	have	similar	or	slightly	higher	methylation	in	the	offspring	of	damaged	

plants	(F=54.13,	p<0.0001,	Figure	3.3B).		Lastly,	overall	standard	deviation	of	methylation	

had	a	significant	negative	effect	on	the	change	of	direction	of	total	methylation	in	the	

progeny	of	damaged	plants	(F=75.54,	p<0.0001,	Figure	3.3C).	TEs	with	more	variable	

methylation	tended	to	decrease	in	methylation	in	the	offspring	of	wounded	plants,	while	

those	with	less	variable	methylation	tended	to	increase	in	methylation.		

For	CHG	methylation,	the	offspring	of	damaged	plants	had	slightly	higher	mean	TE	

methylation	(OD:	37.3%,	OC:	36.9%,	t=	6.53,	p<0.0001),	and	much	higher	variation	

between	(OD:	0.047,	OC:	0.031,	t=25.85,	p<0.0001).	For	CHH	methylation	there	was	not	a	

significant	change	in	either	mean	(OD:	14.1%,	OC:	14.0%,	t=1.69,	p=0.09)	or	variation	(OD:	

0.0204,	OC:	0.0197,	t=1.78,	p=0.075)	of	TE	methylation	between	the	offspring	of	damaged	

and	undamaged	plants.	There	was	not	a	significant	relationship	between	average	

methylation	and	change	in	direction	of	methylation	or	change	in	variation	of	methylation	in	

response	to	damage	for	either	CHH	or	CHG	methylation.	TE	family	had	a	significant	effect	

on	change	of	direction	for	CG	methylation	(p<0.001),	but	not	on	either	CHG	or	CHH	

methylation.	

	 	

Differentially	Methylated	Regions	

We	identified	600	CG	differentially	methylated	regions	(DMRs),	304	CHG	DMRs,	and	

8,877	CHH	DMRs	between	the	offspring	of	damaged	and	control	individuals.	DMRs	ranged	

in	size	from	20-713bp	and	contained	between	6	and	198	cytosines	in	the	context	

considered.	Within	these	regions	percent	methylation	changes	between	the	offspring	of	

damaged	and	control	plants	was	22.8%	for	CG,	23.4%	for	CHG,	and	17.8%	for	CHH.	Both	CG	
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and	CHG	DMRs	were	more	likely	to	have	increased	methylation	in	the	offspring	of	damaged	

(63.1%	for	CG	and	69.1%	for	CHG)	plants,	but	a	similar	amount	of	CHH	DMRs	were	up	and	

down-regulated	in	the	offspring	of	damaged	plants		(49.3%	up-regulated).	Of	the	600	CG	

DMRs,	213	overlapped	with	gene	bodies	(35.5%),	as	did	162	CHG	DMRs	(53.3%),	and	2,316	

of	8,877	CHH	DMRs	(26.1%).		Additionally,	153	CG	DMRs,	132	CHG	DMRs,	and	1,614	CHH	

DMRs	fell	within	1kb	upstream	of	a	gene,	a	hot	spot	of	epigenetic	regulation	occurs.	

	 12.2%	(26/213)	of	the	genes	that	contained	a	CG	DMR	within	their	gene	body	were	

differentially	expressed,	significantly	more	than	the	7.5%	of	differentially	expressed	used	

genome	wide	(Table	3.1).		Genes	overlapping	CHH	DMRs,	up-stream	CG	and	up-stream	CHH	

DMRs	were	also	differentially	expressed	more	frequently	than	expected	by	chance	(Table	

3.1).		These	results	provide	evidence	that	the	inheritance	of	altered	methylation	states	is	

associated	with	coinciding	differential	gene	expression,	but	do	not	confirm	or	reject	prior	

hypotheses	regarding	the	role	of	direction	of	differential	methylation	in	gene	regulation.	To	

test	these	hypotheses	genes	were	classified	by	the	direction	of	change	in	both	methylation	

and	gene	expression.		

There	was	not	a	strong	relationship	between	direction	of	methylation	change	in	

gene	body	CG	DMRs	and	direction	of	differential	expression.	However,	CG	DMRs	primarily	

located	within	exons	of	DE	genes	tended	to	have	increased	expression	in	the	offspring	of	

wounded	plants	(9	of	12	cases),	while	DMRs	within	introns	tended	to	be	down-regulated	

(Figure	3.4.a,	8	of	12).	Differential	CG	methylation	in	up-stream	regions	was	associated	

with	differential	gene	expression	when	there	was	a	methylation	increase	in	the	offspring	of	

damaged	plants,	but	not	a	decrease	in	up-stream	methylation.		In	9	of	16	cases	increased	

up-stream	CG	methylation	coincided	with	decreased	gene	expression,	not	significantly	
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more	than	the	7	that	had	increased	expression.	For	both	up-stream	and	gene	body	CG	

DMRs	methylation	tended	to	be	slightly	lower	than	genome-wide	methylation	levels	(63%)	

in	the	group	with	higher	methylation	and	get	further	more	depleted	in	the	group	with	

lower	methylation	to	40%.	These	patterns	hold	up	whether	the	methylation	levels	

increased	or	decreased	in	the	offspring	of	damaged	plants.	

For	both	gene	body	and	up-stream	CHH	DMRs	there	was	an	overabundance	of	

regions	with	increased	methylation	and	decreased	gene	expression	in	the	offspring	of	

damaged	plants	(Table	3.2).	This	is	predicted	by	prior	gene	methylation	modeling	results,	

and	supports	the	hypothesis	that	CHH	methylation	is	associated	with	transcriptional	gene	

silencing.		Considering	DE	genes	overlapping	a	CHH	DMR,	77	of	206	genes	were	up-

methylated	and	down-expressed	compared	to	the	49	expected	if	all	classes	were	present	at	

background	levels	(Chi-Square=17.546,	p=0.0015,	Chi-Square	contribution	of	15.4	by	up-

methylated,	down-expressed	class).	These	DMRs	primarily	overlapped	with	exon	regions,	

but	the	pattern	of	increased	methylation	coinciding	with	decreased	expression	was	

detectable	in	intron	regions	as	well	(Figure	3.4.b).	Considering	DE	genes	that	contained	

CHH	DMRs	within	upstream	regions,	56	of	147	genes	fell	into	this	up-methylation	down	

expression	class,	also	significantly	more	than	the	34	expected	by	chance	(Chi-

Square=15.09,	p=0.0045,	Chi-Square	contribution	of	13.6	by	up-methylated,	down-

expressed	class).	Within	gene	body	CHH	DMRs	for	which	there	was	increased	methylation	

in	the	offspring	of	damaged	plants	we	see	that	the	mean	methylation	increases	on	average	

from	26%	to	44%.		Interestingly,	this	is	significantly	higher	than	the	background	average	of	

12%	gene	body	CHH	methylation	across	genes	as	a	whole	(p<0.001).	Up-stream	CHH	DMRs	
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show	a	similar	pattern	wherein	methylation	increases	from	an	average	of	27%	to	44%	in	

the	offspring	of	damaged	plants.	

	 Genes	overlapping	CG	DMRs	were	enriched	for	the	GO	terms	growth	and	nucleotide	

binding	were	the	two	most	significantly	enriched	classes	of	genes	(Figure	3.5.b).	CG	DMRs	

within	upstream	were	enriched	for	enzyme	regulator	activity	and	other	GO	terms	(Figure	

3.5.a).	CHH	DMRs	were	enriched	for	cell	cycle,	cytoskeleton,	and	DNA	metabolic	process	

(Figure	3.5.d),	and	when	considering	only	up-methylated	gene	body	CHH	DMRs,	the	most	

significantly	enriched	GO	term	was	response	to	abiotic	stimulus	(Figure	3.5.e,	p=0.00076),	

followed	by	transportation	and	catalytic	activity.		Up-stream	CHH	DMRs	were	not	enriched	

for	any	class	of	GO	term.	Gene	body	CHG	DMRs	were	enriched	for	GO	terms	transport	and	

abiotic	stimulus	(Figure	3.5.c).	

	 KEGG	mapping	identified	numerous	metabolic	pathways	that	contained	a	high	

number	of	differentially	methylated	genes	for	various	classes.	Of	the	5	candidate	pathways	

identified	during	our	prior	transgenerational	gene	expression	work	in	this	

system(COLICCHIO	et	al.	2015b),	four	of	them	were	found	to	contain	a	substantial	number	of	

genes	with	differential	methylation	matching	the	previously	observed	patterns	of	

differential	gene	expression	(COLICCHIO	et	al.	2015b).	The	same	enzymes	that	were	

differentially	expressed	and	involved	in	the	production	of	jasmonic	acid,	ethylene,	and	GA	

synthesis	were	also	differentially	CG	methylated.	Additionally,	6	enzymes	involved	in	

phenylpropanoid	metabolism	were	differentially	CHH	methylated	(5	up-methylated,	1	

down-methylaed),	as	were	20	involved	in	starch	and	sucrose	metabolism,	with	many	of	

these	involved	in	the	synthesis	of	pectin	and	xyloglucans,	vital	cell	wall	components,	that	

are	also	differentially	expressed.	
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	 Transcription	factor	Mimulus	guttatus	MYB	Mixta-like	8	(MgMYBML8),	was	originally	

identified	in	a	qPCR	candidate	gene	screen	as	a	potential	regulator	of	transgenerational	

trichome	induction	(SCOVILLE	et	al.	2011),	and	is	yet	again	found	to	be	differentially	

regulated	due	to	parental	wounding.	In	the	offspring	of	damaged	plants	there	is	both	a	34	

nucleotide	DMR	containing	4	CHG	cytosines	with	increased	methylation	(18%)	and	a	106	

nucleotide	region	containing	16	CHH	cytosines	with	increased	methylation	(14.5%)	within	

the	Mixta-8	gene	body.		Both	of	these	forms	of	differential	methylation	predict	decreased	

gene	expression,	the	same	pattern	observed	in	both	q-PCR	and	RNA-seq	experiments	

across	numerous	lines,	separate	grow	ups,	and	different	developmental	stages.	

	 		

Discussion	

	 In	response	to	parental	wounding	a	signal	is	produced	that	leads	to	altered	gene	

expression	and	phenotypes	in	the	offspring.	Here	we	provide	evidence	for	the	epigenetic	

basis	of	this	transgenerational	response,	as	well	as	an	increase	in	variation	in	the	offspring	

of	wounded	individuals.	By	performing	whole	genome	bisulfite	sequencing	we	were	able	to	

gauge	the	magnitude	and	scale	of	transgenerational	epigenetic	inheritance.		Using	a	sliding	

window	approach	we	were	able	to	identify	differentially	methylated	regions	without	

regard	to	a	priori	expectations.	We	find	relatively	small	regions	of	targeted	differential	

methylation,	and	a	general	trend	towards	increased	methylation	variation.	Both	of	these	

findings	parallel	prior	gene	expression	results:	and	get	us	one	step	closer	to	deciphering	

the	mechanism	through	which	parental	environment	affects	offspring	development.	In	the	

offspring	of	damaged	plants	gene	expression	was	also	more	variable	across	individuals,	
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and	genes	that	were	previously	identified	as	being	down	regulated	were	found	here	to	have	

overlapping	repressive	methylation	marks.	

While	all	forms	of	cytosine	methylation	play	a	role	in	the	controlling	gene	

expression	and	chromatin	state	in	plants,	the	context	of	a	methylated	cytosine	greatly	

affects	its	role	in	gene	regulation	(COLICCHIO	et	al.	2015a).	Determining	the	role	of	CG,	CHG,	

and	CHH	methylation	in	mediating	transgenerational	inheritance	was	a	major	goal	of	this	

study,	and	the	results	presented	above	shed	new	light	upon	the	flexibility	and	variation	of	

these	different	classes	of	methylation.	Along	with	altering	gene	expression,	DNA	

methylation	also	plays	a	large	role	in	the	control	and	suppression	of	transposable	elements.		

The	effect	of	environmental	stresses	on	altering	the	regulation	of	transposable	elements	is	

well	known,	but	the	persistence	of	these	changes	between	generations	is	still	poorly	

understood.	Here	we	generate	a	snapshot	of	the	epigenetic	regulation	of	transposable	

elements	one	generation	removed	from	leaf	damage	and	find	that	there	are	still	small	but	

significant	epigenetic	changes	due	to	parental	environment.		

	

	 Variance	Increase	

	 While	some	genomic	regions	had	an	increase	or	decrease	in	methylation	in	the	

offspring	of	wounded	plants,	many	more	simply	had	increased	variation	in	response	to	

parental	damage.		This	genome	wide	trend	of	increased	variation	in	the	offspring	of	

damage	plants	was	most	obvious	in	the	CG	methylation	context,	where	within	treatment	

variation	increased	by	over	22%	across	gene	bodies.		Previous	gene	expression	work	

identified	a	coinciding	increase	in	gene	expression	variation	in	the	progeny	of	damaged	

plants.	Studies	in	asexual	dandelions	previously	demonstrated	that	the	offspring	of	plants	
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exposed	to	a	salt	stress	as	well	as	a	number	of	plant	hormones	express	a	greater	degree	of	

epigenetic	diversity	than	the	progeny	of	control	plants	(VERHOEVEN	et	al.	2010).	Taken	

together	these	results	provide	substantial	evidence	that	the	offspring	of	plants	exposed	to	

stressful	environments	may	exhibit	more	epigenetic,	gene	expression,	and	potentially	

phenotypic	variation	than	the	offspring	of	plants	grown	in	controlled	environments.		In	our	

case	we	find	that	rather	than	a	loss	of	epigenetic	regulation	of	a	set	of	highly	variable	genes,	

there	is	a	general	increase	in	variability	that	suggests	that	epigenetic	deregulation	is	a	

genome-wide	trend.	The	evolutionary	significant	of	this	increase	in	variation	in	response	to	

environmental	perturbations	is	unclear,	but	it	could	be	that	through	increasing	epigenetic	

variation,	environmental	stressors	facilitate	rapid	evolution	(ROBERTSON	and	RICHARDS	

2015).		

	

	 Transposable	Elements	

In	the	offspring	of	damaged	plants	we	identify	substantial	shifts	in	the	methylation	

of	a	large	number	of	transposable	elements.		Our	results	suggest	that	many	transposable	

elements	are	significantly	up-methylated	in	all	three	contexts,	and	that	TE	CG	methylation	

has	a	number	of	nuanced	shifts	in	response	to	parental	wounding.	Moderately	CG	

methylated	genes	showed	a	significant	increase	in	methylation	variation	in	the	offspring	of	

wounded	plants,	and	TEs	with	more	variable	methylation	tended	to	decrease	in	

methylation	in	the	offspring	of	wounded	plants,	while	those	with	less	variable	methylation	

tended	to	increase	in	methylation.	Additionally,	there	was	a	significant	effect	of	transposon	

family	on	the	direction	change	in	TE	CG	methylation.	Non-CG	methylation	did	not	show	any	

of	these	patterns,	but	did	show	general	increases	in	TE	methylation.	This	explains	why	our	
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general	linear	model	identified	significantly	(p<0.05)	more	CG	up-methylated	than	down-

methylated	TEs	even	though	average	TE	CG	methylation	was	higher	in	the	offspring	of	

control	plants.		

While	CG	methylation	is	the	most	stably	transmitted	form,	recent	results	suggest	

that	non-CG	methylation	is	the	first	responder	in	reprogramming	disrupted	methylation	

states	(KORTH	and	DIXON	1997;	LAW	and	JACOBSEN	2010;	STROUD	et	al.	2014).		We	

hypothesize	that	in	response	to	damage,	there	is	a	loss	of	CG	methylation	in	lowly	and	

moderately	methylated	TEs.		Through	a	negative	feedback	loop	this	would	likely	lead	to	

increased	transcription	of	these	TEs,	leading	to	the	activation	of	RdDM	silencing	

mechanisms	and	increased	non-CG	methylation	at	these	loci	(MARÍ-ORDÓÑEZ	et	al.	2013;	

NUTHIKATTU	et	al.	2013).		Overtime,	this	should	lead	to	the	return	of	full	CG	methylation,	but	

this	process	may	take	numerous	generations.		We	hypothesize	that	the	high	level	of	CG	

methylation	variation	in	the	offspring	of	damaged	plants	represents	an	intermediate	step	in	

the	recovery	of	CG	methylation	at	these	initially	epigenetically	released	transposable	

elements.		

	

Differentially	Methylated	Regions	

The	discovery	of	hundreds	of	regions	with	differential	CG	and	CHG	methylation,	and	

thousands	of	regions	with	differential	CHH	methylation	demonstrates	that	parental	

environment	leads	to	targeted	epigenetic	changes	in	the	next	generation.		The	size	of	these	

regions	averaged	between	177	basepairs,	with	a	median	size	of	135.		Potentially	

meaningfully,	this	size	range	is	similar	to	the	approximately	147	basepairs	that	wrap	

around	a	histone	octamer	to	form	a	nucleosome.	It	could	be	that	targeted	histone	



	 100	

modifications	in	response	to	wounding	trigger	the	methylation	or	demethylation	of	

associated	DNA.		The	finding	that	there	are	over	20	times	as	many	CHH	DMRs	as	either	CHG	

or	CG	DMRs	suggests	that	non-symmetrical	DNA	methylation	is	much	more	plastic	to	the	

environment	than	more	stable	CG	or	CHG	methylation.	Most	methylation	changes	in	

Arabidopsis	thaliana	plants	exposed	to	bacterial	pathogens	were	also	found	to	occur	in	a	

CHH	context,	and	compared	to	other	forms	of	differential	methylation,	CHH	methylation	

DMRs	varied	the	most	between	different	classes	of	stressors	(DOWEN	et	al.	2012).		

Additionally,	differential	CHH	methylation	has	recently	been	shown	to	be	the	primary	form	

of	methylation	to	vary	across	plant	cell	and	tissue	types	(KAWAKATSU	et	al.	2016).	These	

results	suggest	that	CHH	methylation	is	the	most	flexible	for	of	cytosine	methylation	in	an	

evolutionary,	developmental,	and	transgenerational	context.		

	

Gene	Associated	DMRs	

Approximately	35%	of	CG,	53%	of	CHG	DMRs	and	27%	of	CHH	DMRs	overlapped	

with	gene	bodies,	with	thousands	of	other	DMRs	located	within	1kb	upstream	of	genes.		

These	DMRs	located	in,	or	near,	genic	regions	provide	us	with	obvious	candidates	as	the	

loci	up-stream	of	the	observed	patterns	of	differential	gene	expression.		We	tested	this	

hypothesis	by	performing	a	series	of	chi-square	analyses	on	the	overlap	between	our	sets	

of	differentially	methylated	and	differentially	expressed	genes.	Genes	with	either	CG	or	

CHH	DMRs	overlapping	or	up-stream	of	them	were	more	likely	to	be	differentially	

expressed	than	genes	without	nearby	DMRs.		The	increase	in	likelihood	of	being	classified	

as	differentially	expressed	due	to	proximity	to	a	DMR	ranged	from	20%	(Gene	body	CHH)	

to	80%	(Up-Stream	CG).		Gene	body	CHG	overlapping	DMRs	were	47%	more	likely	to	be	
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differentially	expressed	than	background	levels,	but	due	to	the	small	sample	size	(only	162	

gene	body	CHG	DMRs),	this	was	not	found	to	be	significant	(p=0.089).	While	a	high	number	

of	CHG	DMRs	overlapped	with	differentially	expressed	genes,	they	did	not	overlap	

significantly	more	frequently	than	expected	by	chance.		Still,	there	was	a	trend	towards	

increased	DE	in	the	offspring	of	CHG	DMR	genes,	and	it	is	quite	likely	that	CHG	DMRs	also	

play	a	role	in	the	observed	transgenerational	response.		

The	overlap	between	differentially	expressed	and	methylated	genes	is	notable	given	

that	this	contrast	is	“underpowered”	for	two	important	reasons.		First,	different	tissue,	

individuals,	and	experimental	grow-ups	were	used	for	the	DNA	methylation	and	gene	

expression	experiments.	While	the	same	recombinant	inbred	line	was	used	for	both	

analyses,	whole	seedling	tissue	was	used	for	differential	expression	testing,	while	only	leaf	

tissue	was	used	for	the	differential	methylation	analysis.		This	was	done	to	reduce	the	

variation	in	methylome	profiles	within	the	tissue	used	for	methylome	analysis,	but	may	

have	also	lead	to	us	missing	regions	of	the	genome	that	are	only	differentially	regulated	in	

stem	or	meristem	tissue.		Additionally,	both	parent	and	progeny	individuals	were	unique	

between	experiments.		Because	of	this,	any	differential	regulation	in	either	parent	or	

progeny	generation	that	was	due	to	treatment*environment	or	treatment*individual	

effects	would	only	be	identified	in	one	experiment	but	not	the	other.			

While	the	use	of	different	individuals	and	experimental	generations	limits	the	power	

of	this	experiment	to	predict	patterns	of	gene	expression	based	on	methylation	data,	it	also	

adds	credence	to	the	hypothesis	that	genes	found	differentially	regulated	in	both	

experiments	are	responsive	to	parental	wounding	and	not	other	environmental	factors.		

Because	of	this,	the	447	differentially	expressed	genes	for	which	there	was	also	found	to	be	
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an	overlapping	DMR	represent	prime	candidates	as	genes	that	show	relatively	consistent	

differential	regulation	in	the	generation	following	parental	wounding.		

Although	our	ability	to	predict	gene	expression	patterns	from	methylation	patterns	

is	lost	through	this	experimental	design,	within	the	hundreds	of	genes	that	were	

differentially	expressed	and	methylated	the	predicted	patterns	relating	methylation	and	

gene	expression	hold	up.		In	particular	we	find	a	highly	significant	overabundance	of	genes	

for	which	there	was	an	up-stream	or	gene	body	increase	in	CHH	methylation,	and	a	

decrease	in	gene	expression.		The	link	between	CHH	methylation	and	RdDM	or	repressive	

histone	modifications	is	an	obvious	explanation	for	this	finding.		The	result	that	CHH	

methylation	in	these	regions	were	significantly	higher	than	genome	wide	average	levels	

even	in	the	offspring	of	control	plants,	suggests	that	these	regions	experience	increased	

silencing	in	the	offspring	of	damaged	plants,	but	that	these	regions	may	be	predisposed	to	

CHH	based	transcriptional	gene	silencing.		

For	gene	body	CG	DMRs,	the	direction	of	methylation	was	not	consistently	

associated	with	a	specific	direction	of	gene	expression	change,	but	rather	a	general	trend	

toward	differential	expression.		A	likely	explanation	for	this	finding	stems	from	the	

complex	relationship	between	gene	body	methylation	and	gene	expression.		In	our	prior	

analysis	of	DNA	methylation	in	M.	guttatus	we	identified	that	along	with	significant	first,	

second,	and	third	order	gene	body	CG	methylation	effects	on	gene	expression,	it	also	

interacted	with	6	other	terms	in	our	model	to	alter	gene	expression.		In	future	studies	with	

the	same	plants	analyzed	for	both	gene	expression	and	methylation	in	response	to	various	

stressors,	we	will	be	able	to	test	these	complex	predictive	patterns,	but	here	we	can	only	
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postulate	that	the	lack	of	clear	direction	for	CG	methylation’s	effect	on	gene	expression	is	

due	to	this	complexity.		

Up-stream	CG	methylation	within	genes	tended	to	have	a	significant	effect	on	gene	

expression	only	when	there	was	an	increase	in	methylation	in	the	offspring	of	wounding.		

When	this	was	the	case,	we	found	an	overabundance	of	both	up	and	down	regulated	genes.	

Previous	genome	wide	scans	have	repeatedly	identified	that	up-stream	CG	methylation	has	

a	negative	effect	on	gene	expression,	so	this	result	is	a	bit	surprising	(KILBY	et	al.	1992;	

METTE	et	al.	2000).		It	could	be	that	in	some	cases	elevated	up-stream	CG	methylation	

prevents	the	binding	of	repressive	transcription	factors,	or	that	the	observed	instances	of	

up-methylated	DMRs	and	elevated	gene	expression	are	highly	variable	regulatory	regions	

which	were	altered	in	opposite	directions	in	these	two	experiments.		

	

Genes	and	Pathways	of	Interest	

	 The	distinct	ontology	terms	enriched	in	our	various	sets	of	differentially	methylated	

genes	suggest	that	different	classes	of	DNA	methylation	play	different	roles	in	mediating	

the	transgenerational	response.	The	enrichment	of	nucleotide	binding	proteins	in	the	set	of	

genes	overlapping	CG	DMRs	suggests	that	these	genes	may	have	a	role	in	the	regulation	of	

up-stream	players	in	the	transgenerational	response	pathways.		Additionally,	enzymes	

involved	in	the	synthesis	of	Jasmonic	Acid,	Ethylene,	and	Gibberellin	that	were	previously	

identified	as	differentially	expressed	in	the	offspring	of	damaged	plants,	also	show	up	here	

as	containing	gene	body	CG	DMRs.		Spermine	synthase	acts	to	shunt	S-adenosyl-L-

methionine	out	of	the	Yang	cycle	directly	upstream	of	the	synthesis	of	1-

aminocyclopropane-1-carboxylate,	the	precursor	to	ethylene	(YANG	and	HOFFMAN	1984).		
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This	gene	was	significantly	down	regulated	in	the	offspring	of	damage	plants,	and	here	we	

provide	evidence	for	co-occuring	decreased	gene	body	CC	methylation.	The	decreased	

expression	of	spermine	synthase	should	lead	to	elevated	levels	of	ethylene	synthesis	in	the	

progeny	of	damaged	plants;	in	turn	alter	their	physiology	and	gene	expression	in	a	host	of	

ways	(BLEECKER	and	KENDE	2000;	ANDERSON	et	al.	2004).		

	 The	synthesis	of	jasmonic	acid	begins	with	the	hydrolysis	of	a	phospholipid	to	

form	alpha-linoleic	acid	(YAN	et	al.	2013).		Phospholipase	A1	is	one	of	two	enzymes	capable	

of	synthesizing	this	reaction	(ISHIGURO	et	al.	2001),	and	is	up-regulated	in	the	offspring	of	

damaged	M	guttatus	plants.		Here	we	find	that	this	gene	also	has	increased	methylation	in	

the	offspring	of	damaged	plants,	potentially	leading	to	it’s	increased	expression,	and	

potentially	an	increase	in	the	conversion	of	linoleic	acid	into	jasmonic	acid.		Lastly,	3-beta-

dioxygenase	has	increased	gene	body	CG	as	well	as	CHH	methylation	in	the	offspring	of	

damaged	plants	along	with	decreased	gene	expression.		This	gene	converts	the	inactive	

gibberelin	precursors	GA9	and	GA20	to	bioactive	GA1	and	GA4	(LANGE	et	al.	1997).	These	

three	plant	hormones	play	a	substantial	role	in	regulating	numerous	developmental	

processes	as	well	as	biotic	and	abiotic	stress	responses.		Through	the	differential	

methylation	of	these	three	plant	hormones,	hundreds	of	other	genes	could	have	their	

expression	altered	through	the	complex	network	of	transcription	factors	controlled	by	

these	hormones.	The	differential	CG	methylation	of	nucleotide	binding	proteins	along	with	

enzymes	involved	in	hormone	synthesis	suggests	that	differential	CG	methylation	may	

represent	an	up-stream	facilitator	of	transgenerational	phenotypic	plasticity.		

	 In	contrast,	differential	gene	body	CHH	methylation	appears	to	function	in	

either	a	more	specialized	or	downstream	capacity	within	the	transgenerational	response	to	
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parental	wounding.	Rather	than	being	enriched	for	nucleotide	binding	proteins	and	

hormone	synthesizing	enzymes,	differentially	CHH	methylated	tend	to	be	involved	in	stress	

response,	the	cytoskeleton,	cellular	transport,	starch	and	sucrose	metabolism,	and	

phenylpropanoid	production.			Numerous	intriguing	candidate	genes	exhibit	the	most	

common	pattern,	increased	CHH	methylation	and	decreased	gene	expression,	providing	a	

glimpse	into	the	role	of	CHH	methylation	in	transgenerational	plasticity.		

	 The	decreased	expression	of	Mimulus	guttatus	MYB	Mixta-like	8	(MgMYBML8)	in	

the	offspring	of	wounded	plants	has	been	shown	repeatedly	across	methods	(qPCR	and	

RNA-seq),	experimental	generations,	and	tissue	types.	Here	we	find	evidence	that	regions	

of	MgMYBML8	have	elevated	CHH	and	CHG	methylation	in	the	offspring	of	damaged	plants.		

MIXTA–like	genes	have	been	implicated	as	positive	regulators	of	trichome	production	in	

Antirrhinum,	and	have	been	shown	to	be	both	positive	and	negative	regulators	of	trichome	

development	in	Arabidopsis	and	cotton.	Increases	in	CHH	and	CHG	gene	body	methylation	

suggest	that	RdDM	and	coinciding	transcriptional	silencing	of	MgMYBML8	may	play	a	role	

in	the	increased	trichome	density	in	the	offspring	of	damaged	plants.	

	 We	also	find	this	same	pattern	on	increased	CHH	methylation	and	decreased	

gene	expression	in	previously	identified	candidate	genes	involved	in	cell	wall	synthesis,	

breakdown,	and	rearrangement	(a	xyloglucan	endotransglucosylase	hydrolase,	beta-

glucosidase,	and	pectin	methyltransferase)	and	secondary	compound	metabolism	(aspartic	

proteinase	1	and	cinnamyl	dehydrogenase).		In	Arabidopsis,	differential	CG	methylation	

was	found	relatively	consistent	across	a	host	of	pathogens,	yet	CHH	methylation	was	

heavily	pathogen	dependent	(DOWEN	et	al.	2012).	Additionally,	CHH	methylation	varies	the	

most	across	populations	of	Arabidopsis	(SCHMITZ	et	al.	2013b)	and	across	the	diversity	of	
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angiosperms	(NIEDERHUTH	et	al.	2016),	while	CG	methylation	is	much	more	universally	

conserved	(TAKUNO	and	GAUT	2013).	Our	findings	support	the	more	flexible	role	of	CHH	

methylation	in	regulating	the	downstream	outcomes	and	specific	developmental	shifts	due	

to	parental	environment,	while	CG	methylation	appears	to	function	primarily	in	the	

regulation	of	more	conserved	up-stream	pathways.		

	

	 Conclusions	

	 This	transmission	of	environmentally	responsive	epigenetic	markings	between	

generations	represents	a	mechanism	through	which	outside	information	can	be	integrated	

into	the	genome	and	alter	gene	expression	for	some	length	of	time	after	the	initial	signal	

recedes.	Here	we	assay	DNA	methylation	variation	dependent	on	parental	environment,	

and	find	evidence	that	it	plays	a	role	in	linking	parental	environment	with	altered	offspring	

gene	expression.	The	association	between	differentially	methylated	regions	and	nearby	

differentially	expressed	genes	strengthens	the	hypothesis	that	differential	methylation	

plays	a	role	in	mediating	transgenerational	inheritance	and	sheds	light	onto	the	contrasting	

roles	of	CG	and	non-CG	methylation	in	transgenerational	inheritance.		Additionally,	genome	

wide	increases	in	methylome	variation	and	the	differential	methylation	of	certain	TE	

classes	suggests	that	aside	from	targeted	differential	gene	regulation,	parental	conditions	

can	alter	an	organisms	epigenetic	profile	in	a	host	of	other	ways.		Of	particular	evolutionary	

interest,	increased	epigenetic	diversity	may	be	an	unattended	side	effect	of	a	stressful	

environment,	but	may	also	increase	the	speed	through	which	plants	can	adapt	to	rapidly	

changing	environments.		
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Table	3.1.	Chi-Square	contingency	tables	of	differentially	expressed	genes	and	those	
overlapping	differentially	methylated	regions.	
	
	
Gene	Body	CG	 		 		 		 		 		
		 Sig	DE	 NS	DE	 		 Chi-Sq	 p-value	
Sig	Meth	 26	 187	 12.20%	 6.54	 0.0105	
NS	Meth	 1852	 22690	 7.50%	 		 		

	 	 	 	 	 	
	 	 	 	 	 	Up-Stream	CG	 		 		 		 		 		
		 Sig	DE	 NS	DE	 		 Chi-Sq	 p-value	
Sig	Meth	 21	 132	 13.70%	 8.28	 0.004	
NS	Meth	 1857	 22751	 7.52%	 		 		

	 	 	 	 	 	
	 	 	 	 	 	Gene	Body	CHG	 		 		 		 		 		
		 Sig	DE	 NS	DE	 		 Chi-Sq	 p-value	
Sig	Meth	 18	 144	 11.10%	 2.882	 0.089	
NS	Meth	 1861	 22732	 7.56%	 		 		

	 	 	 	 	 	
	 	 	 	 	 	Up-Stream	CHG	 		 		 		 		 		
		 Sig	DE	 NS	DE	 		 Chi-Sq	 p-value	
Sig	Meth	 13	 119	 9.80%	 0.97	 0.33	
NS	Meth	 1866	 22757	 7.58%	 		 		

	 	 	 	 	 	
	 	 	 	 	 	Gene	Body	CHH	 		 		 		 		 		
		 Sig	DE	 NS	DE	 		 Chi-Sq	 p-value	
Sig	Meth	 206	 2110	 8.90%	 6.19	 0.013	
NS	Meth	 1673	 20766	 7.40%	 		 		

	 	 	 	 	 	
	 	 	 	 	 	Up-Stream	CHH	 		 		 		 		 		
		 Sig	DE	 NS	DE	 		 Chi-Sq	 p-value	
Sig	Meth	 147	 1467	 9.10%	 5.67	 0.018	
NS	Meth	 1732	 21409	 7.48%	 		 		
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Table	3.2.	Chi-Square	contingency	tables	addressing	the	relationship	of	direction	of	change	
in	gene	expression,	with	direction	of	change	in	methylation	for	overlapping	DMRs.		
	
	
Gene	Body	CG	
		 		 		 		 		 		
		 		 Up	 Down	 NS	 Chi-Sq	 p-value	
Meth	 Up	 7	 8	 105	 7.31	 0.12	
		 Down	 6	 5	 82	 		 		
		 NS	 824	 1028	 22690	 		 		

	 	 	 	 	 	 	
	 	 	 	 	 	 	Gene	Body	CHH	
		 		 		 		 		 		
		 		 Up	 Down	 NS	 Chi-Sq	 p-value	
Meth	 Up	 43	 77	 1054	 17.48	 0.0015	
		 Down	 37	 49	 1056	 		 		
		 X	 757	 916	 20766	 		 		

	 	 	 	 	 	 	
	 	 	 	 	 	 	Up-Stream	CG	
		 		 		 		 		 		
		 		 Up	 Down	 NS	 Chi-Sq.	 p-value	
Meth	 Up	 7	 9	 75	 14.33	 0.006	
		 Down	 1	 4	 57	 		 		
		 NS	 829	 1029	 22744	 		 		

	 	 	 	 	 	 	
	 	 	 	 	 	 	Up-Stream	CHH	
		 		 		 		 		 		
		 		 Up	 Down	 NS	 Chi-Sq	 P-Valu	
Meth	 Up	 28	 56	 733	 15.0871	 0.00452	
		 Down	 30	 33	 734	 		 		
		 NS	 779	 953	 21409	 		 		
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Figure	3.1.	Density	plot	of	gene-by-gene	variation	within	the	of	damaged	vs.	control	
individuals.		A)	CG	Methylation	standard	deviation	in	the	damage	progeny	group	as	a	
function	of	control	standard	deviation	for	the	same	gene.	B)	CHG,	C)	CHH,	D)	Standard	
deviation	divided	by	mean	gene	expression	in	the	damage	progeny	group	as	a	function	of	
control	variation	for	the	same	gene.	Shifts	in	all	four	above	the	1:1	line	demonstrate	a	
general	increase	in	variance	in	the	progeny	of	wounded	plants.	
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Figure	3.2.	Differentially	methylated	transposable	elements.		Green	numbers	
represent	transposable	elements	in	which	methylation	for	the	given	class	increases	
significantly	(p<0.05)	in	the	offspring	of	wounded	plants.		The	first	number	in	overlapping	
circles	represents	the	number	of	TEs	that	changes	in	the	same	direction	in	response	to	
damaged,	and	the	second	number	represents	those	that	changes	in	opposite	directions.	
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Figure	3.	3.	Patterns	of	differential	TE	CG	methylation	in	the	offspring	of	damaged	
plants.	Numbers	given	on	all	axes	represent	angular	angular	transformed	values.	A)	
Significant	negative	first	and	second	order	effects	of	average	methylation	on	change	in	
variance.	Moderately	methylated	TEs	had	increased	variability	in	the	progeny	of	wounded	
plants,	while	this	was	not	seen	for	lowly	or	highly	methylated	TEs.	B)	More	highly	
methylated	TEs	tended	to	have	increased	CG	methylation	in	the	offspring	of	damaged	
plants,	but	lowly	methylated	TEs	tended	to	have	decreased	methylation.	TEs	with	highly	
variabile	methylation	tended	to	have	lower	methylation	in	the	offspring	of	damaged	plants.	
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Figure	3.4.	Heatmap	of	differentially	methylated	regions	overlapping	differentially	
expressed	genes.	A)	CG	DMRs	overlapping	differentially	expressed	genes,	separated	by	
whether	the	majority	of	the	DMR	overlaps	with	an	exon	or	intron	sequence.	B)	CHH	DMRs,	
separated	in	the	same	manner	as	part	3.4.A.	

	
	
	

																																		A	

	
																																B	
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Figure	3.5.	Enriched	GO	term	in	sets	of	genes	overlapping	various	classes	of	DMRs.	A)	

Up-stream	CG	DMRs,	B)	Gene	body	CG	DMRs,	C)	Gene	body	CHG	DMRs,		D)	Gene	body	CHH	

DMRs,	and	E)	Gene	body	CHH	DMRs	of	increased	methylation	in	the	progeny	of	damaged	

plants.	
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CHAPTER	4	
	

Transgenerational	Effects	Alter	Plant	Defense	and	Resistance	in	Nature	
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Abstract	

Trichomes,	or	leaf	hairs,	are	epidermal	extensions	that	take	a	variety	of	forms	and	

perform	many	functions	in	plants,	including	herbivore	defense.	In	this	study,	I	document	

genetic	variation	in	trichome	density,	within-generation	plasticity,	and	a	direct	role	in	

herbivore	defense	for	Mimulus	guttatus.	After	establishing	the	relationship	between	

trichomes	and	herbivory,	I	test	for	transgenerational	effects	on	trichome	density	and	

herbivore	resistance.	Variation	in	herbivore	density	and	the	high	cost	of	plant	defense	

makes	plant-herbivore	interactions	a	system	in	which	transgenerational	phenotypic	

plasticity	(TPP)	seems	apt	to	evolve.	Here,	I	demonstrate	that	parental	wounding	increases	

trichome	density	and	reduces	herbivory	in	the	offspring	of	damaged	plants	in	natural	

populations.		Moreover,	this	response	varies	between	populations.	This	is	among	the	first	

studies	to	demonstrate	that	TPP	contributes	to	variation	in	nature,	and	also	suggests	that	

selection	can	modify	TPP	in	response	to	local	conditions.	
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Introduction	

Through	common	garden	experiments,	Clausen,	Keck,	and	Heisey	demonstrated	the	

role	of	environmental	and	genetic	factors	on	phenotypic	and	fitness	variation	in	nature	

(CLAUSEN	et	al.	1948).	By	exposing	plants	to	a	variety	of	common	conditions	they	were	able	

to	detect	not	only	a	role	of	stable	genetic	and	general	environmental	factors	on	plant	

growth,	but	also	that	there	is	natural	variation	in	how	plants	respond	to	environmental	

conditions.	This	ability	to	alter	one’s	phenotype	in	response	to	environmental	cues	is	

labeled	“phenotypic	plasticity”,	and	the	molecular	mechanisms	and	adaptive	significance	of	

this	have	been	demonstrated	across	a	broad	array	of	circumstances.	When	an	

environmental	cue	is	a	reliable	predictor	of	future	ecological	conditions,	phenotypic	

plasticity	is	advantageous	(WEST-EBERHARD	1989;	AGRAWAL	2001;	HERMAN	et	al.	2013a;	

KUIJPER	and	HOYLE	2015).		

Following	the	hypotheses	regarding	with-in	generation	plasticity,	if	current	

environmental	conditions	are	a	good	predictor	of	the	conditions	experienced	by	the	next	

generation	(positive	autocorrelation),	then	the	transmission	of	altered	developmental	

trajectories	between	generations	(transgenerational	phenotypic	plasticity,	TPP)	should	

also	be	adaptive	(HERMAN	and	SULTAN	2011;	JABLONKA	2012;	HERMAN	et	al.	2013a;	LEIMAR	

and	MCNAMARA	2015).		For	example,	if	yearly	mean	temperature	patterns	exhibit	positive	

autocorrelation,	selection	should	favor	genotypes	of	plants	that,	when	exposed	to	

particularly	warm	environments,	produce	offspring	transgenerationally	primed	for	

another	warm	season.	However,	if	environmental	conditions	tend	to	cycle	rapidly	then	the	

conditions	experienced	in	one	generation	will	likely	be	very	different	than	those	

experienced	in	the	next	generation	(negative	autocorrelation).	In	this	case	
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transgenerational	effects	are	not	expected	to	evolve,	or	they	are	expected	to	evolve	in	the	

negative	direction.		If	yearly	mean	temperature	patterns	exhibited	negative	inter-annual	

autocorrelation,	selection	would	favor	genotypes	of	plants	that	when	exposed	to	warm	

conditions	produce	offspring	primed	for	a	cool	season.	

Since	the	demonstration	of	transgenerationally	induced	defenses	in	wild	radish	

(AGRAWAL	et	al.	1999),	herbivore	response	has	become	a	model	system	for	studying	TPP	in	

plants.	Numerous	studies	have	demonstrated	that	the	offspring	of	wounded	plants	produce	

more	chemical	and	physical	defenses	than	the	offspring	of	unwounded	plants.	In	

environments	where	herbivore	activity	in	one	generation	has	a	positive	autocorrelation	

with	herbivore	activity	in	the	next	generation,	TPP	to	herbivory	should	be	adaptive	and	this	

type	of	transgenerational	induction	should	evolve.		On	the	other	hand,	if	there	is	no	

autocorrelation	in	herbivore	abundance	this	form	of	transgenerational	plasticity	is	not	

expected	to	evolve,	and	if	high	herbivore	years	tend	to	be	followed	by	low	herbivore	years	

(negative	autocorrelation)	than	it	would	be	beneficial	for	the	offspring	of	wounded	plants	

to	expended	less	energy	on	herbivore	defense	than	the	offspring	of	unwounded	plants.	

The	transcriptional	basis	of	TPP	(COLICCHIO	et	al.	2015b),	its	epigenetic	origin	(BOYKO	

et	al.	2010;	LANG-MLADEK	et	al.	2010;	VERHOEVEN	et	al.	2010;	CALARCO	et	al.	2012;	RASMANN	et	

al.	2012;	HERRERA	and	BAZAGA	2013),	and	taxonomic	prevalence	(HOLESKI	et	al.	2012)	have	

been	major	foci	of	herbivory	driven	TPP	research.	In	Mimulus	guttatus	(yellow	

monkeyflower),	simulated	herbivory	(leaf	wounding)	of	parental	plants	produces	offspring	

with	more	trichomes—defensive	hair-like	epidermal	structures—than	offspring	of	

undamaged	parental	plants	(HOLESKI	2007).	The	offspring	of	damaged	plants	differ	from	the	

offspring	of	control	plants	via	a	broad,	multifaceted	transcriptional	response	(COLICCHIO	et	
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al.	2015b).	Molecular	epigeneticists	have	recently	demonstrated	the	presence	of	an	

intricate	three	part	system	through	which	histone	modifications	(GREENBERG	et	al.	2013),	

DNA	methylation	(MATZKE	and	MOSHER	2014),	and	small-RNAs	(SUNKAR	et	al.	2007;	MCCUE	

et	al.	2012)	are	responsive	to	environmental	conditions,	alter	gene	expression,	and	persist	

into	the	following	generations(VERHOEVEN	and	VAN	GURP	2012b).	These	epigenetic	

mechanisms	appear	likely	to	represent	the	underlying	molecular	basis	of	transgenerational	

plasticity	(RASMANN	et	al.	2012).		

While	examples	of	transgenerational	plasticity	and	our	molecular	understanding	of	

TPP	continue	to	build,	relatively	little	is	still	known	about	the	role	of	transgenerational	

plasticity	in	nature.	In	the	M.	guttatus	system	previous	studies	demonstrated	the	presence	

of	transgenerational	trichome	induction,	and	variation	in	this	response	across	recombinant	

inbred	lines,	and	their	progenitor	inbred	lines.	However,	until	this	point	no	one	has	tested	

for	a	role	of	trichomes	in	herbivore	defense	in	M.	guttatus,	variation	among	natural	

populations	in	transgenerational	plasticity,	or	a	role	of	parental	environment	on	plant	

development	or	fitness	components	in	nature.			

In	Campanulastrum	americanum	field	studies	demonstrated	that	maternal	light	

conditions	alter	the	probability	that	an	offspring	will	assume	a	biennial	life	history	strategy,	

that	this	is	appears	to	be	adaptive,	and	that	there	is	variation	in	this	response	(GALLOWAY	

and	ETTERSON	2007;	GALLOWAY	and	ETTERSON	2009).	Recently,	researchers	studying	

Phaseolus	lunatus	(wild	lima	bean)	utilized	a	novel	approach	to	study	transgenerational	

chemical	defense	induction	and	the	role	of	this	induction	on	plant	survival	in	

nature(BALLHORN	et	al.	2016).			These	studies	provide	complementary	insight	into	

transgenerational	phenotypic	plasticity	in	nature,	and	this	study	expands	upon	previous	
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work	in	the	M.	guttatus	and	other	systems	by	addressing	inter-population	variation	in	

transgenerational	plasticity	in	trichome	production	and	herbivore	resistance	in	nature.			

	

Methods	

Natural	Population	Phenotyping,	Herbivory	assays,	and	Collection	

During	the	summer	of	2014	I	identified	16	natural	populations	of	Mimulus	guttatus	

within	a	150	by	50	mile	area	in	Central	Oregon.	These	sites	ranged	in	elevation	from	89	to	

1,481	meters	(Appendix	13).	When	over	50%	of	plants	at	a	given	site	began	setting	seed	

(between	June	7th	and	August	5th),	12-20	plants	were	collected	per	site	and	brought	to	the	

Plant	Biology	lab	at	HJ	Andrews	Experimental	forest.	Here,	I	assayed	herbivory	on	every	

leaf	of	the	primary	axis	on	a	0	to	5	ranking	(0:	no	leaf	damage,	1:	1-10%	leaf	area	removed,	

2:	11-20%,	3:	21-30%,	4:	31-40%,	5:	>41%)	using	a	visual	estimation	of	leaf	damage	that	

has	been	found	accurate	(JOHNSON	et	al.	2015).	I	also	measured	plant	height	and	width,	and	

counted	the	number	of	flowers	produced	by	each	plant.	In	addition,	I	counted	glandular	

and	non-glandular	trichomes	from	three	leaves	per	plant	(one	of	which	was	always	of	the	

second	leaf	pair,	and	two	of	which	were	later	leaves)	as	described	previously	(COLICCHIO	et	

al.	2015b).	At	the	end	of	the	growing	season	(August	10th-	September	2nd)	I	revisited	these	

sites	and	randomly	selected	and	collected	seed	from	10	plants	per	site.	

	

Experimental	Greenhouse	Generation	

	In	the	fall	of	2014,	I	grew	seed	from	6	maternal	lines	for	eight	of	the	sixteen	

populations	sampled	in	the	field	(chosen	to	represent	a	wide-range	of	ecological	

conditions)	at	the	University	of	Kansas	Greenhouse.	Seeds	were	germinated	individually	in	
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1-inch	cells,	before	being	transplanted	to	2-inch	containers	for	continued	growth.	I	

phenotyped	one	third	of	the	plants	for	second	leaf	trichome	density	at	the	third	leaf	pair	

expanded	stage.	Of	the	remaining	plants,	half	were	subject	to	wounding	through	the	hole-

punch	method	from	the	third	through	the	sixth	leaf	pair	which	was	previously	shown	to	

induce	increases	in	trichome	production	in	inbred	M.	guttatus	lines	(HOLESKI	2007;	

COLICCHIO	et	al.	2015b).	Within	each	population,	I	randomly	selected	one	damaged	and	one	

control	plant	from	each	maternal	line	to	use	as	parent	plants	for	the	next	generation,	while	

the	remainders	were	phenotyped	for	2nd	and	7th	leaf	pair	glandular	and	non-glandular	

trichomes.	Plants	derived	from	TBR	did	not	continue	leaf	development	to	the	7th	leaf	pair,	

and	were	therefore	excluded	from	the	analysis	of	within	generation	trichome	induction.	I	

performed	crosses	using	a	“circular	crossing	design”	for	both	damaged	and	control	

breeding	individuals	(Appendix	14).	From	this	I	generated	six	paired	lines	for	each	of	the	

eight	populations,	deriving	from	either	the	offspring	of	two	control	or	two	damaged	plants	

(Appendix	14).			

Field	Common	Garden	Design	

	 During	the	summer	of	2015,	I	germinated	seeds	from	each	of	these	populations	at	

the	University	of	Oregon	greenhouse	in	1”	flats	and	transplanted	one	to	two	week	old	

seedlings	into	two	common	garden	sites	in	the	Cascade	mountain	region	of	Central	Oregon.	

At	both	sites,	individuals	were	planted	in	a	randomized	design	across	the	site.	One	common	

garden,	HJ	Andrews	Experimental	Forest	(HJA),	was	located	>2	mi	away	from	any	native	M.	

guttatus	population	and	differed	from	typical	M.	guttatus	habitat	in	that	it	contained	a	

greater	composition	of	soil	organic	matter	and	received	fewer	hours	per	day	of	direct	

sunlight	(personal	observations).	The	other	site,	Browder	Ridge	(BR),	features	a	large	
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native	population	and	has	been	the	site	of	numerous	prior	common	garden	experiments	

(MOJICA	et	al.	2012;	MONNAHAN	and	KELLY	2015).		

At	HJA,	1,232	seeds	from	44	lines	(4	were	excluded	due	to	insufficient	seed	set),	

each	replicated	with	either	damaged	or	control	parents,	were	planted	on	April	18th,	799	

(64.8%)	germinated	and	were	planted	into	the	field	on	May	12th,	with	224	of	these	plants	

(28.0%)	eventually	flowering.	1,056	seeds	from	these	same	lines	were	planted	for	the	BR	

garden	on	May	4th,	573	(54.3%)	germinated	and	were	transplanted	into	this	field	site	on	

May	25th,	of	these	94	reached	flowering	(16.4%).	During	the	growing	season,	rapid	dry	

down	due	to	the	drought	conditions	in	the	Cascades	during	the	summer	of	2015	

necessitated	the	addition	of	supplemental	water	at	both	sites	at	the	rate	of	5	gallons	per	

common	garden	site	every	other	day	for	3	weeks	during	the	growing	season.	Of	the	

surviving	318	plants,	153	were	the	offspring	of	damaged	parent	plants,	while	165	were	the	

offspring	of	control	plants.	Trichome	counts	were	completed	for	271	of	318	plants.		

	 I	surveyed	plants	every	other	day,	and	on	the	day	that	a	plant	produced	its	first	

flower,	the	following	traits	were	scored:	largest	leaf	length	and	width,	number	of	leaves,	

plant	height,	node	of	flower,	peduncle	length.	I	assayed	herbivory	by	the	same	method	as	

described	above,	and	one	second	node	leaf	was	collected	for	trichome	phenotyping.		

	

Statistical	Analysis	

	 	Incidence	of	herbivory,	elevation,	aridity	(ZOMER	et	al.	2008),	latitude	and	longitude	

were	all	considered	as	possible	explanatory	variables	in	a	standard	least	squares	

regression	of	population	trichome	density	in	JMP	v10	(SAS	Institute	Inc.,	Cary,	NC).		

Significance	in	this	model	was	determined	through	t-tests.	The	linear	relationship	between	
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population	incidence	of	herbivory	and	trichome	density	was	carried	forward	using	linear	

regression.	

	 Nominal	logistic	regression	was	used	to	determine	if	trichome	densities	have	a	

significant	effect	on	a	leaf	being	classified	as	experiences	minor	damage	compared	to	

moderate/severe	damage.		An	effect	likelihood	ratio	test	was	used	within	this	model	to	test	

for	a	significant	role	of	trichomes	on	damage	severity.	

	 Standard	least	squares	regression	was	used	to	determine	the	relationship	between	

population,	trichome	density,	a	“population	x	trichome”	interaction	term,	and	stem	width	

on	plant	flower	production.		Stem	width	was	included	in	this	model	as	a	covariate	to	help	

partition	out	variation	due	to	general	plant	vigor,	and	get	more	directly	at	the	relationship	

between	trichome	density	and	flower	production	for	a	plant	of	a	given	size.	Effect	

significance	was	determined	by	F-ratio	tests	based	on	factor	sum	of	squares.	

	 	To	detect	signatures	of	phenotypic	plasticity,	7th	leaf	log	trichome	density	was	

considered	the	response	variable	with	population,	family	nested	within	population,	

wounding	treatment,	and	a	“population	x	family”	interaction	term	considered	as	

explanatory	variables.	Using	a	GLM	framework	in	JMP	v10	(SAS	Institute	Inc.,	Cary,	NC)	log-

ratio	chi-square	tests	were	preformed	between	models	to	determine	the	significance	of	the	

various	terms.	

	 	Population	of	origin,	line	nested	within	population,	growth	environment	(field	or	

greenhouse),	parental	wounding,	and	all	possible	two	interaction	effects	between	

population,	parental	wounding,	and	growth	environment,	as	well	as	their	three	way	

interaction	were	considered	in	standard	least	squares	model	with	log-transformed	

trichome	density	as	the	response	variable.	Using	a	GLM	framework	in	JMP	v10	(SAS	
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Institute	Inc.,	Cary,	NC)	log-ratio	chi-square	tests	were	preformed	between	models	to	

determine	the	significance	of	the	various	terms.	

		 Considering	plants	from	which	there	was	at	least	some	sign	of	insect	damage	I	

created	a	model	to	test	which,	if	any,	factors	limit	insect	herbivore	damage.	Using	a	

stepwise	model	selection	method	in	JMP	v10	(SAS	Institute	Inc.,	Cary,	NC),	with	severity	of	

damage	coded	as	minor,	moderate,	or	high	as	the	response	variable.	Possible	explanatory	

variables	to	include	were	population,	site,	parental	treatment,	days	to	flower,	leaf	width,	

plant	height,	trichomes,	treatment*population,	site*treatment,	site*trichomes,	and	

site*population	as	possible	explanatory	factors.	I	then	selected	a	model	using	both	a	

minimum	BiC	and	AicC	criterion.		

	 	

Results	

Natural	Population	Surveys	

Central	Oregon	M.	guttatus	exhibit	vast	natural	variation	in	trichome	density	and	

herbivory	(Appendix	15).	Incidence	of	herbivory	at	a	given	site	was	the	only	factor	

correlated	with	population	mean	trichome	density		(t=3.96,	p=0.0027)	when	considered	

alongside	latitude,	longitude,	aridity,	and	elevation.		Incidence	of	herbivory	was	not	

significantly	correlated	with	any	of	the	preceding	environmental	variables	(Appendix	16).	

The	significant	positive	correlation	between	population	incidences	of	herbivory	and	

trichome	density	(R2	=	0.735,	Figure	4.2)	suggests	that	herbivory	driven	natural	selection	

may	play	a	role	in	population	trichome	density	variation.			

Trichome	densities	were	higher	in	leaves	that	were	classified	as	having	minor	

herbivore	damage	(1%-10%)	compared	to	those	that	experienced	moderate	to	severe	
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herbivore	damage	(10%-50%)	(n=311,	L-R	Chi-square:	13.98,	p=0.0002,	Figure	4.3b).		

While	leaves	that	experienced	minor	herbivory	had	on	average	93	trichomes,	those	that	

experienced	moderate	to	severe	damage	had	only	58	trichomes	on	average.		Considering	

the	effect	of	trichome	on	plant	fitness,	there	was	not	a	general	relationship	between	plant	

trichome	density	and	plant	flower	production	(df=1,	SS=1.36,	F=0.025,	p=0.872),	but	the	

“trichome	x	population”	interaction	term	was	found	to	significantly	affect	flower	

production.	Of	the	populations	carried	forward	for	common	garden	experiments:	

trichomes	were	positively	associated	with	fitness	in	WC,	CSR,	IM,	and	TBR,	and	negatively	

associated	with	fitness	in	BR,	HOL,	LPD,	and	MWL.	This	suggests	that	while	trichomes	were	

found	to	generally	reduce	herbivory,	their	effect	on	fitness	varies	across	populations.		In	

sites	where	trichomes	were	found	negatively	associated	with	fitness,	it	could	be	that	

trichomes	are	ineffective	deterrents	to	herbivores,	or	plants	at	those	sites	tended	to	

produce	more	trichomes	than	optimal	under	current	herbivore	conditions.				

	

Within	Generation	Plasticity	

A	significant	“population	x	wounding	“	interaction	term	on	plant	trichome	density	in	

response	to	wounding	(n=851,	df=6,	X2=14.36,	p=0.026)	suggests	that	there	is	natural	

variation	in	within-generation	plasticity,	or	“Genetic	x	Environmental”	variation.	In	

response	to	wounding,	individuals	from	MWL	and	LPD	both	showed	significant	decreases	

in	7th	leaf	pair	trichome	density,	while	TBR,	CSR,	IM,	and	WC	showed	increases,	and	HOL	

remained	at	very	low	levels	before	and	after	wounding.	Of	note,	in	both	populations	where	

trichome	density	decreased	in	response	to	wounding	(MWL	and	LPD)	there	was	a	negative	

relationship	between	trichome	density	and	herbivory	in	natural	sites,	while	in	all	four	
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populations	where	trichome	density	increased	due	to	wounding	there	was	a	positive	

relationship	between	trichome	density	and	flower	production	in	the	field.	

	

Transgenerational	Phenotypic	Plasticity	

Parental	wounding	had	a	significant	population	dependent	effect	on	offspring	

trichome	density	(Pop*PT,	df=	7,	X2=21.96,	p=0.0026)	in	field	common	garden	and	

greenhouse	conditions.		The	offspring	of	wounded	plants	from	WC,	HOL,	TBR,	CSR,	and	BR	

had	increased	trichome	density,	while	offspring	trichome	production	declined	in	the	

offspring	of	wounded	plants	from	MWL,	LPD,	and	IM.	Considering	populations	for	which	

there	were	signs	of	both	with-in	generation	and	between	generation	plasticity,	we	find	that	

in	5/6	cases	the	directions	of	plasticity	match	between	with-in	and	between	generation	

induction.		Plants	derived	from	MWL	and	LPD	showed	within	generation	and	

transgenerational	decreases	in	trichome	density	in	response	to	wounding,	while	WC,	CSR,	

and	TBR	showed	with-in	generation	and	transgenerational	positive	trichome	induction	in	

response	to	wounding.			Within	IM	(Iron	Mountain)	we	found	evidence	for	significant	

within	generation	positive	induction	of	trichome	density,	but	negative	transgenerational	

effects	in	which	the	offspring	of	wounded	plants	produced	fewer	trichomes	than	the	

offspring	of	control	plants.				

We	also	identified	a	significant	effect	of	growth	environment	on	trichome	

production	(df=1,	X2=184.73,	p<0.0001)	with	plants	grown	in	the	greenhouse	producing	

many	more	trichomes	than	their	siblings	grown	in	the	field.		Different	populations	varied	in	

the	scale	to	which	they	produced	more	trichomes	in	the	field	(“Environment	x	Population”,	

df=7,	X2=48.61,	p<0.0001),	but	plants	from	all	populations	produced	more	trichomes	in	
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greenhouse	compared	to	field	environments.	There	was	not	a	significant	“Environment	x	

Parental	Treatment”	effect	on	trichome	density	(df=1,	X2=0.074,	p=0.785),	but	a	significant	

“Environment	x	Parental	Treatment	x	Population”	term	(df=7,	X2=16.16,	p=0.024)	suggests	

that	populations	vary	in	how	they	express	transgenerational	induction	in	field	vs.	

greenhouse	environments.		

At	common	gardens	plants	producing	more	trichomes	tend	to	experience	less	

severe	herbivory	(n=135,	df=1,	X2=5.14,	p=0.023).		Plants	experiencing	minor	levels	of	

herbivory	had	an	average	trichome	density	of	9.8	trichomes,	moderate	had	5.8,	and	severe	

had	2.7.	

To	further	analyze	the	factors	effecting	plant	herbivore	damage	in	the	field,	two	

models	were	considered.		Using	a	minimum	BiC	criterion	a	model	in	which	only	common	

garden	site,	parental	wounding,	and	their	interaction	term	were	selected	as	explanatory	

factors	explaining	herbivore	severity	in	the	field	(n=115,	df=3,	BiC=158.2,	AiCc=146.2,	

X2=25.29,	p<0.0001).		The	offspring	of	wounded	plants	experienced	less	severe	herbivore	

damage	than	the	offspring	of	control	plants.	Of	the	25	offspring	of	damaged	plants	grown	at	

HJA	that	experienced	herbivory,	all	of	them	experienced	only	minor	leaf	wounding	(less	

than	10%	leaf	area	removal),	while	6/19	offspring	of	undamaged	plants	at	this	same	site	

experienced	moderate	herbivory	(between	10%-30%	leaf	area	removal,	Figure	4.3c).	At	

BR,	the	most	striking	difference	was	found	in	the	severe	herbivory	category;	only	2/27	

(7.5%)	offspring	of	damaged	plants	experienced	severe	wounding	(>30%	leaf	area	

removal),	while	13/43	(30%)	of	offspring	from	control	plants	experienced	this	level	of	

wounding.		
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Under	the	minimum	AiC	selected	model,	those	same	three	terms	and	eight	

additional	terms	were	found	to	influence	plant	herbivory	(df=11,	BiC=	167.9,	AiCc=139.2,	

X2=51.2,	p<0.0001).		This	less	conservative	approach	identified	significant	differences	in	

herbivory	between	plants	of	different	populations,	significant	parental	

wounding*population	and	trichome*site	effects	on	wounding,	and	trichome	density.		Of	

particular	interest	we	find	evidence	that	while	there	is	a	general	trend	of	increased	

herbivore	resistance	in	the	offspring	of	wounded	plants	across	all	populations,	some	

populations	show	this	to	a	great	extent,	while	others	show	the	opposite	response.		The	

offspring	of	wounded	plants	from	WC	showed	the	greatest	increase	in	wound	resistance,	

while	the	offspring	of	wounded	plants	from	MWL	were	less	resistant	than	the	offspring	of	

control	plants.		Log-ratio	Chi-Square	tests	within	this	model	confirm	that	the	effect	of	

parental	wounding	on	offspring	herbivore	resistance	varies	significantly	between	

individuals	from	MWL	and	WC.		Of	the	other	populations,	BR,	CSR,	and	IM	showed	similar	

resistance	in	the	offspring	of	control	and	wounded	individuals,	while	HOL,	LPD,	and	TBR	

showed	increased	resistance	in	the	offspring	of	damaged	plants.			

	

Discussion	

The	experiments	above	reiterate	the	role	of	plastic	responses	to	the	environment,	

genetic	differentiation,	and	the	inferred	role	of	selection	on	phenotypic	differentiation	in	

plants	using	an	extension	of	the	common	garden	technique	popularized	by	Clausen,	Keck,	

and	Heisey	(CLAUSEN	et	al.	1948).		The	addition	of	an	intermediate	greenhouse	generation,	

in	which	plants	were	either	exposed	to	mechanical	wounding	or	not,	extends	the	

framework	to	consider	transgenerational	effects	on	phenotype	and	fitness.	I	demonstrate	
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that	(i)	trichomes	limit	herbivory	in	the	field	and	,	(ii)	parental	environment	alters	

offspring	herbivore	resistance	and	(iii)	defense	phenotypes,	and	that	(iv)	there	is	natural	

variation	in	these	responses.	Additionally,	we	find	that	there	are	patterns	of	inter-annual	

temperature	autocorrelation	in	central	Oregon	that	may	favor	genotypes	that	exhibit	

transgenerational	plasticity.	

Even	in	the	relatively	minute	geographical	range	(150	x	80	miles)	we	consider	in	

this	study,	there	is	vast	natural	variation	in	trichome	density	both	within	and	between	

populations	suggesting	that	this	trait	may	have	a	fickle	association	with	plant	fitness.	

Supporting	this	hypothesis,	at	some	sites	plants	with	more	trichomes	produced	a	greater	

number	of	flowers,	while	at	others	there	was	a	negative	relationship	between	trichome	

density	and	flower	number.	Depending	on	the	type	and	quantity	of	herbivores	present	in	a	

given	year	the	cost/benefit	of	trichomes	may	vary	widely,	selecting	for	a	trait	that	is	

particularly	environmentally	responsive	in	comparison	to	core	metabolic	traits	in	which	

canalization	is	likely	to	limit	plasticity.		

	

Trichomes:	Natural	Variation	and	Role	in	Herbivore	Defense	

Population	level	mean	trichome	densities	are	strongly	correlated	with	population	

level	incidences	of	herbivory	(R2=0.735,	Figure	4.2),	and	at	both	common	gardens	and	

natural	field	sites	plants	with	more	trichomes	tend	to	experience	less	severe	herbivory.	

Additionally,	at	some	natural	sites	trichomes	were	associated	with	increased	fitness,	while	

at	other	they	are	associated	with	decreased	fitness.	Taken	together,	this	suggests	that	M.	

guttatus	trichomes	play	a	role	in	herbivore	defense,	and	they	are	plastically	induced	in	

response	to	herbivores.	Both	of	these	possibilities	are	supported	in	the	literature;	some	
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genotypes	of	Mimulus	guttatus	induce	trichome	production	in	response	to	wounding	

(HOLESKI	2007),	and	there	are	costs	and	benefits	associated	with	herbivore	

defense(MAURICIO	and	RAUSHER	1997;	MAURICIO	1998)	that	could	lead	to	population	

dependent	selection	on	trichome	densities.		

	Supporting	plasticity’s	role	in	altering	trichome	density,	there	was	a	significant	

with-in	generation	effect	of	wounding	(Figure	4.1c,	Appendix	18,	Appendix	19)	on	plant	

trichome	density.	Additionally,	there	was	significant	inter-population	variation	in	this	

plasticity,	demonstrating	the	presence	of	“Genetic	x	Environmental”	trichome	variation.		In	

response	to	wounding	four	of	the	seven	populations	considered	increased	trichome	

production,	one	showed	no	pattern	of	change,	and	two	populations	produced	fewer	

trichomes.	The	two	populations	(LPD	and	MWL)	that	produced	fewer	trichomes	in	

response	to	wounding	were	also	the	only	two	of	seven	populations	to	have	a	negative	

correlation	between	trichomes	and	fitness	in	the	field,	while	the	four	populations	had	

positive	relationships	between	trichome	density	and	fitness	in	the	field.		As	only	living,	

flower	producing	plants	were	considered	in	this	study,	high	constitutive	trichome	

production	at	these	two	sites	may	increase	the	probability	of	survival	to	flowering,	but	

given	that	a	plant	does	flower	have	a	negative	effect	on	fecundity.		

	

Transgenerational	Effects	on	Trichomes	and	Herbivory	

		 In	both	greenhouse	and	field	experiments	leaf	trichome	density	was	affected	by	

wounding	conditions	in	the	previous	generation.		While	the	majority	of	lines	showed	

increased	trichome	density	in	the	offspring	of	wounded	individuals,	plants	derived	from	

LPD,	MWL,	and	IM	wounded	offspring	produced	fewer	trichomes.	This	represents	an	
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example	of	negative	transgenerational	effects,	which	are	expected	to	evolve	under	negative	

environmental	autocorrelations.	The	parental	stress	imposed	in	this	experiment,	

mechanical	wounding	though	hole-punching,	does	not	perfectly	mimic	the	response	of	

herbivory	(REYMOND	et	al.	2000),	yet	wounding	responsive	genes	seem	to	partially	overlap	

with	herbivory	induced	genes	and	represent	a	variety	of	general	stress-response	pathways	

(REYMOND	et	al.	2004).		

	 While	trichome	densities	were	found	to	vary	in	response	to	parental	wounding	in	

both	field	and	greenhouse	environments,	there	was	a	significant	three	way	“Current	

Environment	x	Parental	Environment	x	Population”	effect	on	trichome	density.		This	

demonstrates	that	the	phenotypic	outcomes	of	transgenerational	plasticity	vary	depending	

on	the	current	environment	and	genotype	of	an	individual	and	represents	an	example	of	

“genetic	x	environmental	x	transgenerational”	variation.		While	the	current	environment	

effects	the	magnitude	of	the	transgenerational	response,	in	this	study	the	same	populations	

that	exhibit	transgenerational	induction	in	nature	did	so	in	the	greenhouse	as	well.	

Using	both	minimum	BiC	and	AiCc	model	selection	approaches	we	compared	

models	to	identify	factors	influencing	herbivore	resistance	in	field	common	gardens.		The	

minimum	BiC	selected	approach	identified	only	parental	wounding,	common	garden	site,	

and	their	interaction	term	were	found	to	significantly	influence	wounding	severity.	As	

herbivory	is	known	to	impose	strong	selective	pressures,	increased	herbivore	resistance	in	

the	offspring	of	wounded	plants	suggests	that	experiences	in	the	prior	generation	

contribute	to	variation	in	fitness	in	nature.	Transgenerational	induction	of	increased	

herbivore	defense	in	response	to	parental	wounding	should	be	adaptive	when	patterns	of	

year-to-year	variation	in	herbivore	density	exhibit	at	least	a	minor	degree	of	temporal	
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autocorrelation.			In	order	to	directly	test	whether	these	patterns	of	herbivore	variation	

exist	in	nature,	long-term	herbivore	abundance	studies	would	need	to	be	preformed.		While	

this	data	set	is	not	available	at	these	locations,	patterns	of	abiotic	environmental	variation	

can	provide	a	first	glimpse	into	environmental	autocorrelations	in	nature.		

Climate	data	from	1895-2014	exhibits	patterns	of	year-to-year	autocorrelation	for	

both	annual	mean	temperature	and	precipitation.		Both	temperature	and	moisture	

availability	impact	herbivore	activity,	and	so	these	climatic	variables	should	shed	light	unto	

patterns	of	inter-annual	herbivore	variation.	At	all	four	locations	there	were	positive	

autocorrelations	in	mean	annual	temperature,	with	autocorrelation	values	varying	from	

0.12	to	0.41.		While	the	intricacies	underlying	this	autocorrelation	were	not	studied	here,	it	

is	possible	that	patterns	such	as	the	El	Nino	Southern	Oscillation	and	Pacific	Decadal	

Oscillation	are	responsible	for	inter-annual	temperature	autocorrelations	(NEWMAN	et	al.	

2003).		If	mean	annual	temperature	influences	herbivore	activity,	then	this	observed	

pattern	of	temperature	autocorrelation	may	give	rise	to	positive	autocorrelations	in	

herbivore	abundance.		This	should	select	for	genotypes	where	the	offspring	of	wounded	

plants	are	better	defended	than	the	offspring	of	control	plants,	as	observed	in	this	study.	

Annual	autocorrelation	of	precipitation	was	generally	less	prominent	than	

temperature	autocorrelations,	and	varied	not	only	in	terms	of	magnitude,	but	also	

direction.		In	three	of	the	four	sites	considered	there	was	a	slight	negative	autocorrelation	

in	annual	precipitation	(from	-0.05	to	-0.11),	and	in	one	site	there	was	a	positive	

correlation	of	0.16.	Over	the	past	120	years,	at	some	locations	particularly	wet	years	have	

tended	to	be	followed	by	another	wet	year,	in	other	locations	wet	years	tend	to	be	followed	

by	dry	years.		
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Using	the	more	complex	minimum	AiCc	selected	model	we	find	evidence	for	natural	

variation	in	transgenerationally	induced	resistance	to	herbivory.	Considered	alongside	the	

natural	variation	in	TPP	for	trichome	production,	there	is	substantial	support	for	positive	

transgenerational	induction	within	the	WC,	TBR,	and	HOL	populations	(induced	herbivore	

resistance	and	trichome	production),	and	moderate	support	for	BR	and	CSR	(induced	

trichome	production	but	not	herbivore	resistance).		Within	LPD	we	have	evidence	of	

induced	herbivore	resistance,	but	decreased	trichome	production,	potentially	implicating	

other	forms	of	defense	in	their	transgenerational	response.		In	MWL	there	is	significant	

evidence	of	negative	transgenerational	induction	(reduced	trichome	production	and	

herbivore	resistance	in	the	progeny	of	wounded	plants),	with	moderate	support	for	

negative	induction	in	IM	(reduced	trichome	density	but	no	change	in	herbivore	resistance).	

Out	of	the	eight	populations	considered,	the	two	that	showed	signs	of	negative	

transgenerational	induction,	IM	(Iron	Mountain)	and	MWL	(Mount	Washington	Lookout),	

were	derived	from	the	highest	elevation	sites.	

IM	and	MWL	are	not	located	particularly	close	geographically,	but	they	do	represent	

the	two	northern	most	populations	surveyed	in	this	study.		It	could	be	that	they	represent	a	

genetic	clade	that	does	not	have	the	genetic	machinery	necessary	to	exhibit	

transgenerational	plasticity.			While	this	is	possible,	IM	is	located	only	8	miles	from	the	BR,	

which,	along	with	the	next	most	northern	population,	CSR,	both	show	significant	signs	of	

transgenerational	plasticity.	It	therefore	seems	possible	that	a	certain	aspect	of	high	

elevation	life	selects	against	transgenerational	plasticity	for	trichome	induction	and	

herbivore	resistance.			
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Assuming	rates	of	herbivory	are	both	temperature	and	moisture	dependent	as	

suggested	in	the	literature(BALE	et	al.	2002),	the	observed	positive	autocorrelations	in	

temperature	may	explain	the	lack	of	transgenerational	plasticity	at	high	elevations.	At	

alpine	sites	such	as	IM	and	MWL,	both	insect	herbivores	and	plants	are	most	active	during	

the	relatively	short	growing	season	between	when	the	ground	clears	of	snow	and	the	soil	

completely	dries.		While	high	temperatures	and	ample	rain	during	the	growing	season	

should	increase	herbivore	activity	in	the	short-term,	it	will	also	reduce	nearby	snowpack	

going	into	winter	(WALKER	et	al.	1999;	PEDERSON	et	al.	2011).	During	the	following	growing	

season	decreased	snowpack	will	reduce	moisture	availability,	a	vital	factor	determining	

herbivore	success	(Bale	et	al.	2002).	Thus,	while	at	high	elevations	inter-annual	

temperature	autocorrelations	exist,	the	relationship	between	temperature	and	snowpack	

may	generate	a	negative	autocorrelation	in	inter-annual	herbivore	activity.		

While	the	contribution	of	transgenerational	effects	on	fitness	in	nature	has	

numerous	ecological	implications,	the	evolutionary	significance	of	TPP	depends	upon	

natural	variation	in	the	underlying	molecular	mechanism.	This	study	demonstrates	the	

presence	of	significant	inter-population	variation	for	TPP	(Figure	4.1d),	suggesting	that	

evolution	in	response	to	different	regimes	of	environmental	variation	could	in	turn	lead	to	

variation	in	TPP.	Population	level	variation	in	TPP	was	considered	in	this	experiment	due	

to	the	assumption	that	the	environmental	patterns	selecting	for	or	against	TPP	should	be	

relatively	constant	within	a	population	but	vary	considerably	across	the	species	range.		

Evidence	suggests	that	there	is	also	with-in	population	variation	for	TPP(GALLOWAY	and	

ETTERSON	2007),	which	could	be	acted	upon	by	natural	selection	to	favor	genotypes	whose	

capacity	to	transgenerationally	respond	are	favorable	in	the	local	environment.		
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Recently,	there	has	been	controversy	over	the	evolutionary	significance	of	TPP,	yet	

theoretical	work	continues	to	demonstrate	that	under	certain	patterns	of	year-to-year	

environmental	variation	TPP	should	be	adaptive	(HERMAN	et	al.	2013a;	LEIMAR	and	

MCNAMARA	2015),	and	here	I	provide	empirical	support	for	the	adaptive	potential	of	this	

system	and	the	presence	of	TPP	variation	in	nature.	In	environments	where	parental	

conditions	are	highly	correlated	with	offspring	conditions,	natural	selection	should	favor	

alleles	that	lead	to	a	high	degree	of	TPP,	but	in	areas	with	low	year-to-year	serial	

correlation,	these	alleles	should	be	selected	against	(Figure	1d,	FURROW	and	FELDMAN	2014).	

Based	on	patterns	of	year-to-year	temperature	variation	we	confirm	that	the	necessary	

ingredients	necessary	for	transgenerational	plasticity	to	evolve	are	present	in	this	system.		

Conclusions		

Aside	from	imparting	selective	pressures,	these	experiments	suggest	that	

environmental	conditions	can	directly	manipulate	the	growth	and	success	of	future	

generations	through	transgenerational	effects.	One	possible	explanation	for	this	system	of	

inherited	environmental	information	is	that	a	portion	of	the	environmentally	induced	

epigenetic	changes	(such	as	DNA	methylation	or	histone	modifications)	are	not	reset,	but	

rather	passed	between	generations	(VERHOEVEN	et	al.	2010).	Further	work	is	necessary	to	

determine	the	mechanism	through	which	epigenetic	effects	are	reiterated	in	the	germ	line,	

but	evidence	for	the	epigenetic	basis	of	TPP	is	mounting.		Methylation	changes	in	response	

to	environmental	stress	(WANG	et	al.	2010;	DOWEN	et	al.	2012),	stably	transmitted	

epigenetic	markings	(RASMANN	et	al.	2012;	SLAUGHTER	et	al.	2012;	SCHMITZ	et	al.	2013a;	LI	et	

al.	2014),	and	epigenetic	effects	on	gene	expression	(COLICCHIO	et	al.	2015a)	all	point	

towards	epigenetic	inheritance	as	the	source	of	TPP.	
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	 Adaptive	TPP	in	nature	was	first	demonstrated	as	a	transition	between	annual	and	

biennial	life	history	strategies	in	response	to	maternal	light	conditions	in	Campanulastrum	

americanum	(GALLOWAY	and	ETTERSON	2007;	GALLOWAY	and	ETTERSON	2009).	Here,	utilizing	

the	system	of	plant	herbivore	defense,	this	work	gets	expanded	upon	by	considering	

multiple	populations,	natural	TPP	variation,	and	measures	of	offspring	fitness	and	

phenotype	in	common	gardens.	The	DNA	passed	from	parent	to	offspring	is	insensitive	to	

the	experiences	of	a	generation,	but	rather	a	compendium	of	the	mutation,	selection,	and	

migration	of	ones	ancestors.	It	is	clear	that	in	addition	to	the	stochastic	voyage	towards	

fitness	peaks,	the	transmission	of	environmentally	induced	signals	also	plays	a	role	in	the	

success	and	development	of	an	organism.	While	this	and	other	recent	experiments	have	

confirmed	the	potential	implications	of	TPP,	future	studies	across	a	diversity	of	species	and	

involving	herbivory,	light	conditions,	and	other	environmental	factors	will	be	necessary	to	

demonstrate	it’s	relative	ecological	and	evolutionary	significance.	
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Figure	4.1.	Four	mechanisms	that	explain	natural	variation	in	plant	trichome	
density.	(A)	Transgenerational	induction:	In	response	to	wounding	plants	transmit	a	signal	
to	their	offspring	that	leads	to	increased	trichome	production	in	the	next	generation.		In	
nature	the	offspring	of	damaged	plants	have	an	increased	likelihood	of	producing	glandular	
trichomes,	leading	to	less	severe	herbivory	in	these	offspring	of	damaged	plants.		
(B)Within-generation	induction:	In	response	to	wounding	plants	produce	more	trichomes	
on	later	leaf	pairs.		Within-generation	trichome	induction	has	been	documented	in	a	
number	of	species,	and	within	this	study	there	was	natural	variation	between	populations	
for	the	induction	of	glandular	trichomes.	It	is	currently	unclear	as	to	whether	similar	
signals	and	mechanisms	are	responsible	for	within	and	between	generation	induction.		(C)	
Herbivore-driven	selection.	Between	population	variation	in	herbivore	abundance	leads	to	
coinciding	variation	in	selective	forces	acting	upon	plant	defense	traits,	such	as	trichomes.	
There	was	a	strong	correlation	between	incidence	of	herbivore	damage	and	trichome	
density	that	was	maintained	in	common	garden	conditions.		This	suggests	that	along	with	
plastic	trichome	regulation,	stable	genetic	selection	due	to	local	herbivore	abundance	has	
adjusted	baseline	trichome	densities	on	a	population	scale.	(D)	Variation-driven	TPP	
selection.		When	year-to-year	variation	in	herbivore	abundance	has	high	positive	
autocorrelation	the	transmission	of	environmental	signals	should	be	selected	for;	however	
when	autocorrelation	is	low	or	negative	TPP	should	be	selected	against.		Other	factors,	such	
as	the	periodicity	of	the	transitions	between	high	and	low	herbivore	years	and	the	cost	of	
TPP	should	also	affect	the	evolution	and	maintenance	of		transgenerational	inheritance.		
This	study	demonstrates	that	there	is	natural	variation	in	TPP,	but	future	work	will	be	
necessary	to	demonstrate	the	environmental	parameters	that	select	on	this	variation.		
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Figure	4.2.	Positive	correlation	(R2=0.735)	between	percent	leaves	damaged	and	the	
number	of	trichomes	per	leaf	in	sixteen	natural	M.	guttatus	populations.	Elevation	
and	longitude	of	each	population	are	demarcated	by	size	and	color	of	the	point	
respectively.	These	factors	represented	alternative	ecological	correlates	that	may	have,	but	
were	not,	found	to	be	associated	with	plant	trichome	production.	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

0

50

100

0.2 0.4 0.6 0.8
Percent leaves damaged

Tr
ic

ho
m

es
 / 

Le
af

Elevation

Low (300 ft)

High (5,500 ft)

West 

East
Longitude

R2 =0.735 



	 139	

	
Figure	4.3.	(A)	Mean	log	transformed	glandular	trichome	counts	for	M.	guttatus	across	
common	garden	sites	that	experienced	varying	levels	of	herbivory.	Error	bars	represent	
standard	error.	Severely	wounded	plants	had	significantly	fewer	glandular	trichomes	than	
plants	with	no	or	minor	wounding.	(B)	Mean	log	transformed	trichome	counts	at	natural	
populations	for	plants	that	experienced	varying	levels	of	herbivory.	Error	bars	represent	
standard	error.	Severely	wounded	plants	had	significantly	fewer	trichomes	than	plants	
with	minor	wounding.	(C)	Damage	severity	at	BR	(n=70)	and	HJA	(n=44)	common	garden	
sites	in	the	offspring	of	control	and	damaged	plants.	The	width	of	columns	scales	to	the	
number	of	individuals	in	that	treatment	class	for	a	given	common	garden	site.	
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Conclusions	

	 	
	 In	at	least	one	relatively	unassuming	wildflower	it	appears	that	the	simple	act	of	

hole-punching	a	leaf	leads	to	epigenetic,	gene	expression,	phenotypic,	and	resistance	

differences	in	it’s	offspring.		In	this	dissertation	I	demonstrate	that	not	only	are	genes	

involved	in	trichome	production	differentially	expressed,	but	so	to	are	those	in	a	host	of	

other	metabolic	pathways.	Additionally,	many	differentially	expressed	genes	overlap	with	

regions	of	differential	methylation,	suggesting	a	key	role	of	epigenetics	in	TPP.	When	taken	

to	the	field,	not	only	do	the	offspring	of	wounded	plants	produce	more	trichomes	than	the	

offspring	of	control	plants,	but	they	also	resist	herbivory	to	a	greater	extent.		Taken	

together,	these	results	suggest	that	the	mechanisms	capable	of	promoting	adaptive	

transgenerational	inheritance	are	in	place,	and	may	play	a	prominent	role	in	adaptation.	

	 As	the	scientific	community	begins	to	devote	more	energy	to	the	study	of	TPP,	and	

the	“Lamarckian”	stigma	in	the	field	begins	to	fade,	its	true	place	in	the	extended	

evolutionary	synthesis	model	of	life	will	be	discovered.		Whatever	this	place	may	be,	as	a	

brief	aside	or	a	core	concept,	the	transmission	of	environmental	information	between	

generations	demonstrates	the	remarkable	power	of	natural	selection.		The	fact	that	a	

complementary	system	of	inheritance	can	evolve	from	within	our	primary	system	of	

genetic	inheritance	is	a	marvelous	thing,	and	a	prime	example	of	how	seemingly	novel	

mechanisms	can	emerge	from	fundamental	laws.		The	next	time	you	find	yourself	in	an	

alpine	meadow	in	mid-bloom;	delight	in	the	fact	that	the	vast	natural	variation	is	not	

simply	the	product	of	environmental	and	genetic	differences,	but	also	reflects	lingering	

environmental	responses	of	generations	past.	
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Appendix	1	–	A)	Based	on	experimental	population	for	RNAseq	analysis	in	this	study,	
progeny	of	damaged	plants	produce	significantly	more	trichomes	than	progeny	of	control	
plants	(p<0.025).	B)	Trichome	density	determined	in	a	follow-up	experiment	accounting	
for	parent	plant	of	origin	as	a	nested	variable	in	ANOVA.	Treatment	e	ect	(p=0.0003),	
parent	e	ect	(p=0.523).	C)	Based	on	RNAseq,	progeny	of	damaged	plants	
expressMGMYBML-8	at	significantly	lower	levels	than	the	progeny	of	control	plants	
(DESeq2:	p-value=0.01,	EdgeR:	p-value=0.02).		
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Supplemental Figure S1: A) Based on experimental population for RNAseq analysis in this study, 
progeny of damaged plants produce significantly more trichomes than progeny of control plants 
(p<0.025). B) Trichome density determined in a follow-up confirmation experiment accounting 
for parent plant of origin as a nested variable in ANOVA. Treatment effect (p=0.0003), parent 
effect (p=0.523).  C) Based on RNAseq, progeny of damaged plants expressMGMYBML-8 at 
significantly lower levels than the progeny of control plants (DESeq2: p-value=0.01, EdgeR: 
p-value=0.02).
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Appendix	2	–	Primers	used	for	RT-qPCR	transcript	expression	confirmation.	
	
DE	transcript	
ID	 Gene	ID	

Position	in	M.	guttatus	
genome	V	2.0	 Primer	sequence	

1428104	 Heat	Shock	6AB	 Scaffold_4		 Primer	1	
1671299-	1673148	 Forward:	

GTTGGCAAACTCCCATTTGT	
		 Reverse:	

CGGAAGCTTTGTTGTGTGG	
		 Product	size	mRNA:	125	
		 Product	size	DNA:	420	

1324230	 Adipocyte	plasma	
membrane-
associated	
(Strictosidine	
synthase	like-2)	

Scaffold_10	
18088684-18094197	

Forward:	
TCTGCAAGTTGTGGTCTCCA	
Reverse:	
CGATCAAAATAGCGGAGTCG	
Product	size	mRNA:	150	
Product	size	DNA:	1,500	

1358627	 Tyrosine	
Aminotransferase	

Scaffold_13	
15225541-	
15228255		

Forward:	
CATCGGCACAAAAGGGTTAT	
Reverse:	
AATCCGTGTGGGAACGTTTA	
Product	size	mRNA:	130	
Product	size	DNA:	245	

1444264	 DNAJ	HSP-40	 Scaffold_4	
20756516-20757629	

Forward:	
ATGCACCAGGCTTACGAAAC	
Reverse:	
ACTGCCATTTCGTTTTCCAC	
Product	size	mRNA:	150	
Product	size	DNA:	262	

1495616	 Dormancy/	Auxin	
Associated	
Protein	1A	

Scaffold_8	
16248497-16249443	

Forward:	
CGCGTAAGGATAACGTGTGG	
Reverse:	
CACCGGTGACTCCAAATCTT	
Product	size	mRNA:	137	
Product	size	DNA:	255	

1315072	 CHY	RING	Zinc	
Protein	

Scaffold_10	
2108572-	2111820	

Forward:	
TCCTCTAGTCTGCCGCGTAT	
Reverse:	
TGCGGTCACACCATACATCT	
Product	size	mRNA:	172	
Product	size	DNA:	560	
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Appendix	3	–	Number	of	RNaseq	reads	generated	and	mapped	for	each	of	twelve	
individuals.	
	

Plant	ID	

Number	of	
Reads	Mapped	
to	Refrence	
Genome	

Total	Number	of	
Reads	

Percent	of	Total	
Reads	Mapped	to	
Refrence	Genome	

C1a	 75,195,595.00	 87,406,770.00	 86.03	
C1b	 79,573,890.00	 99,489,738.00	 79.98	
C2a	 90,106,672.00	 104,062,180.00	 86.59	
C2b	 74,475,264.00	 93,290,834.00	 79.83	
C3a	 72,256,647.00	 90,261,332.00	 80.05	
C3B	 82,777,367.00	 95,900,734.00	 86.32	
D1a	 90,915,696.00	 105,509,888.00	 86.17	
D1b	 78,848,660.00	 98,351,402.00	 80.17	
D2a	 75,934,492.00	 95,053,668.00	 79.89	
D2b	 100,060,101.00	 115,663,080.00	 86.51	
D3a	 83,642,660.00	 96,900,302.00	 86.32	
D3b	 85,171,859.00	 106,859,744.00	 79.7	

	 	 	 	
	

988,958,903.00	 1,188,749,672.00	 83.13	
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Appendix	4	–	Genotype	in	chromosome	14	region	of	heterozygosity.	
	

Individual	

Genotype	in	
Region	of	
Heterozygosity	

D1A	 IM	
D1B	 Het	
D2A	 PR	
D2B	 PR	
D3A	 Het	
D3B	 IM	
C1A	 IM	
C1B	 Het		
C2A	 PR	
C2B	 IM	
C3A	 Het	
C3B	 Het	
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Appendix	5	-	Relative	expression,	with	minimum	individual	expression	for	each	gene	
set	to	equal	one,	based	on	RNAseq	and	RT-qPCR	gene	expression	results	for	6	differentially	
expressed	genes.	Three	up	regulated	transcripts,	and	three	
down-regulated	transcripts	were	confirmed	for	differential	expression	in	two	
offspring	each	from	three	damaged	and	three	control	parental	plants.	Heat	Shock	
Protein	6ab,	Strictosidine	Synthase,	Tyrosine	Aminotransferase,	Heat	Shock	
Protein	40,	Dormancy	Associated	Protein,	and	CHY	Zinc	Finger	(transcript	ID#s	
1428104,	1324230,	1358627,	1444264,	1495616,	and	1315072,	respectively).	
Bars	represent	group	averages,	and	points	represent	individual	sample	expression.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

six differentially expressed genes. Three up regulated transcripts, and three 

down-regulated transcripts were confirmed for differential expression in two 

offspring each from three damaged and three control parental plants.  Heat Shock 

Protein 6ab, Strictosidine Synthase, Tyrosine Aminotransferase, Heat Shock 

Protein 40, Dormancy Associated Protein, and CHY Zinc Finger (transcript ID#s 

1428104, 1324230, 1358627, 1444264, 1495616, and 1315072, respectively). 

Bars represent group averages, and points represent individual sample expression.

Figure S2: Relative expression, with minimum individual expression for each gene 

set to equal one, based on RNAseq and RT-qPCR gene expression results for 
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Appendix	6	–	Scatterplots	showing	fold	change	by	mean	expression	for	genes	differentially	
expressed	in	at	least	one	of	five	programs	(FDR<0.1).	a-e)	Of	the	genes	found	differentially	
expressed	in	at	least	one	program,	scatterplots	showing	those	genes	found	to	be	
differentially	expressed	in	individual	programs	(	FDR<0.1);	DESeq2,	limma,	EdgeR,	NOISeq	
and	SAMSeq,	respec-	tively.	f	)	Scatterplot	showing	fold	change	by	mean	expression	for	
individual	genes	found	to	be	differentially	expressed	in	at	least	one	program,	color	coded	
by	the	number	of	programs	that	found	an	individual	gene	to	be	differentially	expressed.		
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Figure S3. Scatterplots showing fold change by mean expression for genes differentially 
expressed in at least one of five programs (FDR<0.1). a-e) Of the genes found differentially 
expressed in at least one program, scatterplots showing those genes found to be differentially 
expressed in individual programs ( FDR<0.1); DESeq2, limma, EdgeR, NOISeq and SAMSeq, respec-
tively. f ) Scatterplot showing fold change by mean expression for individual genes found to be 
differentially expressed in at least one program, color coded by the number of programs that 
found an individual gene to be differentially expressed.
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Appendix	7	–	A)	483	genes	found	to	be	differentially	expressed	(FDR<0.1)	with	Limma	
using	family	structured	analysis.	B)	1276	genes	found	to	be	differentially	expressed	
(FDR<0.1)	with	EdgeR	using	family	structured	analysis.	C)	Venn	diagram	showing	the	
significant	overlap	between	genes	found	differentially	expressed	using	consensus	
methodology,	and	the	two	programs	which	account	for	parent	line	in	the	analysis.		
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Appendix	8	–		GO	terms	that	show	significant	enrichment	or	depletion	in	the	set	of	
differentially	expressed	genes	relative	to	the	seedling	transcriptome.	
	

GO	Term	 GO	Category	

Fisher's	Exact	
Test	p-value	
for	
Enrichment/D
epletion	

Fisher's	Exact	
Test	FDR	for	
Enrichment/D
epletion	

Over/U
nder	

Differen
tially	
Express
ed	with	
GO	
Term	

Whol
e	
Geno
me	
with	
GO	
Term	

cell	periphery	
Cellular	
Component	 1.92E-08	 1.19E-05	

Enriche
d	 0.22	 0.14	

membrane	
Cellular	
Component	 4.74E-07	 1.30E-04	

Enriche
d	 0.34	 0.26	

response	to	stimulus	
Biological	
Process	 6.31E-07	 1.30E-04	

Enriche
d	 0.32	 0.23	

response	to	abiotic	
stimulus	

Biological	
Process	 1.55E-06	 2.12E-04	

Enriche
d	 0.15	 0.10	

plasma	membrane	
Cellular	
Component	 1.71E-06	 2.12E-04	

Enriche
d	 0.19	 0.13	

cellular	aromatic	
compound		

Biological	
Process	 1.42E-05	 8.05E-04	

Deplete
d	 0.06	 0.11	

organic	cyclic	compound		
Biological	
Process	 1.42E-05	 8.05E-04	

Deplete
d	 0.06	 0.11	

heterocycle	metabolic	
process	

Biological	
Process	 1.42E-05	 8.05E-04	

Deplete
d	 0.06	 0.11	

cellular	nitrogen	
compound		

Biological	
Process	 1.42E-05	 8.05E-04	

Deplete
d	 0.06	 0.11	

nucleobase-containing	
compound		

Biological	
Process	 1.42E-05	 8.05E-04	

Deplete
d	 0.06	 0.11	

nitrogen	compound		
Biological	
Process	 1.43E-05	 8.05E-04	

Deplete
d	 0.06	 0.11	

gene	expression	
Biological	
Process	 3.31E-05	 1.71E-03	

Deplete
d	 0.01	 0.04	

cell	wall	
Cellular	
Component	 3.85E-05	 1.84E-03	

Enriche
d	 0.06	 0.03	

external	encapsulating	
structure	

Cellular	
Component	 4.34E-05	 1.92E-03	

Enriche
d	 0.06	 0.03	

extracellular	region	
Cellular	
Component	 2.28E-04	 9.43E-03	

Enriche
d	 0.08	 0.05	

cell	cycle	
Biological	
Process	 3.08E-04	 1.19E-02	

Deplete
d	 0.01	 0.03	

response	to	stress	
Biological	
Process	 3.48E-04	 1.27E-02	

Enriche
d	 0.20	 0.15	

mitochondrion	
Cellular	
Component	 7.72E-04	 2.66E-02	

Deplete
d	 0.05	 0.09	

RNA	binding	
Mollecular	
Function	 8.30E-04	 2.71E-02	

Deplete
d	 0.01	 0.03	

macromolecular	complex	
Cellular	
Component	 1.99E-03	 5.04E-02	

Deplete
d	 0.01	 0.03	

translation	
Biological	
Process	 2.00E-03	 5.04E-02	

Deplete
d	 0.01	 0.03	

macromolecule	 Biological	 2.02E-03	 5.04E-02	 Deplete 0.01	 0.03	
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biosynthetic	process	 Process	 d	
cellular	biosynthetic	
process	

Biological	
Process	 2.02E-03	 5.04E-02	

Deplete
d	 0.01	 0.03	

cellular	macromolecule	
Biological	
Process	 2.02E-03	 5.04E-02	

Deplete
d	 0.01	 0.03	

organic	substance	
biosynthetic	process	

Biological	
Process	 2.03E-03	 5.04E-02	

Deplete
d	 0.01	 0.03	

ribosome	
Cellular	
Component	 2.72E-03	 6.24E-02	

Deplete
d	 0.01	 0.03	

ribonucleoprotein	
complex	

Cellular	
Component	 2.72E-03	 6.24E-02	

Deplete
d	 0.01	 0.03	

nuclease	activity	
Mollecular	
Function	 3.22E-03	 6.98E-02	

Deplete
d	 0.00	 0.01	

hydrolase	activity,	ester	
bonds	

Mollecular	
Function	 3.31E-03	 6.98E-02	

Deplete
d	 0.00	 0.01	

cellular	metabolic	process	
Biological	
Process	 3.38E-03	 6.98E-02	

Deplete
d	 0.19	 0.24	

cytoplasmic	part	
Cellular	
Component	 4.55E-03	 9.10E-02	

Deplete
d	 0.27	 0.32	
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Appendix	9	–		Heat	map	showing	twenty-eight	differentially	expressed	genes	coding	for	
heat	shock	proteins	resulting	from	parent	leaf	damage.	Asterisk	denotes	the	one	heat	shock	
gene	downregulated	in	response	to	parent	leaf	damage.	
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regulated in response to parent leaf damage.
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Appendix	10	–	Predicted	log(gene	expression)	from	cubic	polynominal	REML	model	
compared	to	actual	log(gene	expression).	Slope	=1.02,	R2=0.201,	df=28.	
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Appendix	11	–	Read	depth	and	percent	methylation	in	the	nine	individuals	sequenced	in	
this	study.	
	

Treatment	 Number	of	Reads	
Average	
Depth	 CG	 CHG	 CHH	

OC1	 1888902727	 6.4	 70.45	 35.90	 14.95	
OC2	 1877864952	 6.4	 58.85	 26.80	 11.60	
OC3	 1867678993	 6.3	 67.60	 30.60	 12.30	
OC4	 1778153365	 6	 70.00	 36.80	 13.90	
OD1	 1219264220	 4.2	 73.10	 40.30	 14.20	
OD2	 1860074372	 6.3	 72.76	 39.93	 14.28	
OD3	 2386764313	 8.1	 72.90	 39.50	 14.15	
OD4	 1941206754	 6.6	 71.25	 39.40	 16.30	
OD5	 2797016391	 9.5	 69.05	 34.25	 14.00	
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Appendix	12	–	MDM	plots	for	two	representative	individuals	in	this	study.	(A)	OD1,	(B)	
OD1.	
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Appendix	13	–	Geographical	and	environmental	variables	alongside	trichome	production	
and	herbivory	for	each	of	the	study	populations.		Also,	correlation	between	variables	and	
trichome	production.	
	
Population	 Aridity	 Elevation	 Lat	 Long	 Herbivory	 Trichomes	
LPM	 12095	 288.3	 -122.61	 43.83	 0.08	 7.51	
CSR	 16418	 236.2	 -122.48	 44.40	 0.09	 10.78	
MO	 12277	 314.9	 -122.57	 43.81	 0.19	 15.94	
HOL	 14180	 211.5	 -122.72	 44.09	 0.37	 34.55	
Mona	 16961	 449.9	 -122.27	 44.19	 0.36	 38.36	
BR2	 23475	 1219.2	 -122.13	 44.37	 0.40	 49.58	
SX	 11413	 307.8	 -122.54	 43.79	 0.43	 59.67	
TBR	 17492	 675.1	 -122.05	 44.29	 0.48	 69.06	
CGR	 16593	 528.8	 -122.25	 44.13	 0.31	 78.97	
MRT	 16260	 526.4	 -122.05	 44.21	 0.38	 81.12	
BKM	 25072	 1200.9	 -122.30	 44.23	 0.63	 89.94	
MTC	 25886	 1481.0	 -122.14	 44.28	 0.55	 91.19	
LPD	 12284	 265.8	 -122.76	 43.92	 0.60	 91.52	
MWL	 26171	 1223.8	 -121.78	 44.19	 0.77	 97.44	
WC	 16670	 89.0	 -123.63	 44.00	 0.67	 97.53	
IM	 27094	 1432.6	 -122.15	 44.40	 0.55	 127.50	
Cor.	with	
Trichomes	 0.59	 0.55	 0.3	 0.14	 0.86	 		
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Appendix	14	-		Crossing	design.		Six	families	from	each	of	eight	populations	were	brought	
back	to	the	greenhouse	and	crossed.		For	one	version	of	each	family	parents	were	wounded	
throughout	seed	set	(red	circles),	while	another	set	of	parents	were	not	damaged	to	use	as	
a	control	group	(blue	circles).	
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Appendix	15	-	Mean	glandular	and	non-glandular	trichome	counts	as	well	as	herbivory	(0	
represents	no	herbivory,	1	represents	minor,	2	represents	moderate)	for	sixteen	
populations	across	three	leaf	pairs.	Error	Bar	is	standard	error.			
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Appendix	16	-	Effect	of	various	factors	on	leaf	trichome	density	and	herbivory	across	
sixteen	populations	
	
		 	Log(NG	Trichomes)	 Log(G	Trichomes)		 Leaf	Damage	

		 Df	 ChiSq	 P-Value	 Df	 	ChiSq	 P-Value	 Df	 ChiSq	 P-Value	

Population	 15	 147.26***	 <2.2x10-
16	 12	 28.59	 0.0045	 15	 54.38***	 2.28X10-

6	

Node	 2	 49.79***	 1.54x10-
11	 2	 18.43	 9.97x10-

5	 2	 25.97***	 2.30X10-
6	

Pop*Node	 30	 121.01***	 6.89x10-
13	 11	 27.24	 0.0043	 30	 47.8*	 0.021	

Plant(Pop)	 1	 		 		 1	 		 		 1	 		 		

Residual	 459	 		 		 58	 		 		 605	 		 		
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Appendix	17	-	Effect	of	growth	environment	(field	vs.	greenhouse)	on	2nd	leaf	trichome	
density.	
	
	
		 	Log(NG	Trichomes)	 Log(Glan)	

		 Df	 F	Ratio	 P-Value	 F-Ratio	 P-Value	

Pop	 7	 9.08***	 <.0001	 94.07***	 <.0001	

Envi	 1	 1.06	 0.303	 26.93***	 <.0001	

Pop*Envi	 7	 3.60**	 0.0011	 X	 X	

Residual	 218	 N=234	 		 N=79	 		
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Appendix	18	-	Effect	of	leaf	wounding	plasticity	on	7th	leaf	trichome	density.	
	
	
	
		 Log(NG	Trichomes)	 Log(Glan)	

		 Df	 ChiSq	 P-Value	 ChiSq	 P-Value	

Pop	 6	 10.68	 0.099	 55.05***	 <4.5x10-10	

Dam	 1	 3.16	 0.074	 1.43	 0.265	

Pop*Dam	 6	 4.3	 0.635	 14.90*	 0.021	

Model	 13	 N=172	 		 N=190	 		
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Appendix	19	–	Phenotypic	plasticity	of	7th	leaf	trichome	density	in	response	to	control	or	
wounding	treatment.	
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Appendix	20	–	Effect	of	various	factors	on	the	trichome	density,	or	presence	absence	of	
trichomes.	
	
	
		 Log(NG	Trichomes)	 Log(Glan)	 P/A	NG	 P/A	G	

		 Df	 ChiSq	 P-Val	 ChiSq	 P-Value	 ChiSq	 P-Val	 ChiSq	 PVal	

Pop	 7	 19.5*	 0.0068	 6.59	 0.306	 13.74	 0.056	 38.75***	 2.2x10-6	

Site	 1	 0.15	 0.7	 0.025	 0.874	 5.72*	 0.017	 0.43	 0.51	

P-Dam	 1	 0.269	 0.604	 2.39	 0.124	 4.16*	 0.042	 7.1**	 0.0077	

Pop*P-Dam	 7	 20.25**	 0.0025	 10.45	 0.107	 8.23	 0.32	 6.2	 0.52	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	*:	p<0.05	

	 	 	 	 	 	 	 	 	**:p<0.005	
	 	 	 	 	 	 	 	 	***:p<0.0005	

	 	 	 	 	 	 	 		
	


