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Parental experience modifies the Mimulus
methylome
Jack M Colicchio1,2* , John K Kelly2 and Lena C Hileman2

Abstract

Background: Transgenerational plasticity occurs when the environmental experience of an organism modifies the
growth and development of its progeny. Leaf damage in Mimulus guttatus exhibits transgenerational plasticity
mediated through differential expression of hundreds of genes. The epigenetic mechanisms that facilitate this
response have yet to be described.

Results: We performed whole genome bisulfite sequencing in the progeny of genetically identical damaged and
control plants and developed a pipeline to compare differences in the mean and variance of methylation between
treatment groups. We find that parental damage increases the variability of CG and CHG methylation among
progeny, but does not alter the overall mean methylation. Instead it has positive effects in some regions and
negative in others. We find 3,396 CHH, 203 CG, and 54 CHG Differentially Methylated Regions (DMRs) ranging from
tens to thousands of base pairs scattered across the genome. CHG and CHH DMRs tended to overlap with
transposable elements. CG DMRs tended to overlap with gene coding regions, many of which were previously
found to be differentially expressed.

Conclusions: Genome-wide increases in methylome variation suggest that parental conditions can increase
epigenetic diversity in response to stress. Additionally, the potential association between CG DMRs and differentially
expressed genes supports the hypothesis that differential methylation is a mechanistic component of
transgenerational plasticity in M. guttatus.
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Background
Phenotypic plasticity, the ability to modify development
according to environmental cues, is of vital importance in
response to the constantly changing abiotic and biotic
world. While the molecular mechanisms, evolutionary im-
plications, and diversity of plastic phenotypic responses
have received considerable attention [1, 2], the ability of
parents to transmit signals that evoke plastic responses to
the next generation remains poorly understood and
skeptically viewed [3]. This skepticism is largely due to ties
with “Lamarckism”, but a more scientifically grounded
concern is our limited understanding of the mechanisms
of epigenetic inheritance. In this study, we utilize whole
genome bisulfite sequencing to test how parental damage

in the flowering plant, Mimulus guttatus, effects the epi-
genetic profile of the following generation. By utilizing the
same M. guttatus recombinant inbred line (RIL) in which
we previously estimated the transgenerational response of
gene expression [4], we are able to identify differentially
methylated regions and consider their potential regulation
of transposable element (TE) and gene expression.
Conditions experienced by parents have been shown to

alter the fitness, phenotype, gene expression, and DNA
methylation of progeny for biotic [5–11] and abiotic [12–
16] interactions. In M. guttatus, progeny plants increase
trichome production and differentially express nearly 1000
genes in response to parental damage [4, 7, 8]. The progeny
of drought stressed Polygonum persicaria alter seedling
growth, resulting in increased fitness in dry conditions [17].
Maternal light environment influences offspring growth
and increases fitness when offspring environment is similar
to parent environment in Campanulastrum americanum
[14, 18]. Evidence from Solanum lycopersicum and
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Arabidopsis thaliana suggests that plant hormone response
and epigenetic regulatory pathways are vital for at least a
portion of transgenerational effects [6]. Yet there remain
many open questions regarding the types of loci that are
differentially methylated, the magnitude of differential
methylation, and the effect of differential methylation on
nearby gene expression following from alterations to paren-
tal environment [19].
In addition to targeted loci or phenotypes that are

modified by parental environment, there also appears to
be a general increase in the variability of the epigenome
in response to stressful parental conditions. Response to
a wide variety of parental environmental signals in the
progeny of apomictic dandelions (Taraxacum officinale)
increases DNA methylation variation [16] and alters a
wide array of progeny phenotypes including root:shoot
ratios and specific leaf area [20]. While effects of parent
environment on the mean DNA methylation of a locus
has been the primary class of transgenerational effect
studied thus far, it is also possible that modifying the
stochasticity of the epigenome is beneficial in harsh or
changing environments.
DNA cytosine methylation, histone modifications, and

small RNAs are key epigenetic regulators, that act
through linked pathways [21–24] to alter the transcrip-
tion and translation of genes. DNA methylation in plants
can occur on any cytosine nucleotide, but the mecha-
nisms that propagate methylation and the effects of
methylation on genome regulation vary between those in
CG, CHG, or CHH methylation contexts, where H is
any nucleotide other than G [25–28]. While all three
types of methylation act in silencing TEs, their role in
regulating gene expression is more variable. Both the
methylation context and the location of methylation
relative to coding sequences (upstream, downstream,
within introns/exons) affect the relationship between
methylation and gene expression [29, 30].
CG methylation is found at the highest frequencies in

flowering plant DNA—occurring on over 50% of CG se-
quences in many species [31]. CG methylation upstream
of gene coding sequences is associated with suppression of
gene expression [28, 29, 32]. CG methylation in gene cod-
ing sequences tends to be relatively modest in flowering
plants, except in M. guttatus where it is present at moder-
ate to high levels [33], and its effects on gene expression
are complicated and disputed [29, 31, 34, 35]. From work
in M. guttatus and other systems it appears that interac-
tions between gene length, upstream DNA methylation,
and other factors alter the role, if any, of coding sequence
CG methylation on gene regulation [28, 29, 36].
CHG and CHH methylation are often grouped as

“non-CG” methylation, and occur at significantly lower
levels across plant genomes [29, 33, 37]. CHG and CHH
methylation are propagated and reiterated by partially

overlapping pathways, often initiated by 24-nt small inter-
fering (si) RNAs [23, 24, 38]. Non-CG methylation is asso-
ciated with transcriptional repression. While epigenetic
marks such as histone modifications appear to be reset
during gamete formation in plants [39] and many methy-
lation marks are reset during embryo development [40],
the recent discovery that si-RNAs are loaded into pollen
granules [41], are phloem mobile [38], and can mediate
methylation in recipient cells [42] presents one possible
mechanism through which environmentally induced epi-
genetic marks may be transmitted between generations
[43]. Additionally, a growing body of work utilizing epiR-
ILs and other approaches have demonstrated that methy-
lation patterns are highly heritable (see review [44]),
providing evidence that altered epigenomic profiles can be
inherited across generations.
Holeski (2007) [8] demonstrated that parental leaf dam-

age can induce a transgenerational response of elevated
trichome production in M. guttatus, and that the response
is variable among genotypes. M. guttatus is therefore and
excellent model for studying the ecology and evolution of
transgenerational plasticity. Since Holeski (2007), we have
determined that induction can be transmitted both pater-
nally and maternally, is partially dependent on DNA
methylation, and persists through at least two generations
[45]. The transgenerational signal initiated by parental leaf
damage in a highly responsive genotype induces the differ-
ential expression of nearly 1000 genes in progeny [4].
Transgenerationally plastic responses resulting from par-
ental leaf damage in M. guttatus have significant effects
on plant resistance to herbivory in the field [46], and may
involve additional plant defensive responses beyond trich-
ome induction (e.g., general stress response; [4]).
Here, we investigate how parental environment alters

the offspring methylome. We carry out our experiments in
recombinant inbred line (RIL) 94, a model genotype for
transgenerational plasticity. RIL-94 exhibits a strong in-
duction phenotype in which offspring of leaf damaged
plants mount a defensive response including increased
trichome production [8]. Working in this isogenic back-
ground minimizes phenotypic, transcriptomic, and epigen-
etic variation, allowing us to better characterize the
transgenerational response, compare results across inde-
pendent experiments, and in the long-term explore tran-
scriptome and epigenome responses across inductive and
non-inductive M. guttatus genotypes. We present
whole-genome methylation data from progeny of damaged
and control M. guttatus RIL-94 plants, and examine pat-
terns of differential methylation in relation to previously
published gene expression results from our RIL-94 model.
We implement a novel computational methodology to

more accurately estimate individual cytosine methylation
levels based on the methylation of nearby sites, followed by
a unique application of the PELT changepoint detector
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algorithm [47], and a generalized linear model framework
to identify regions of consistent differential methylation
(Fig. 1). Within this framework we address whether parental
environment influences global or locally targeted DNA
methylation patterns. We test whether different classes of
methylation (CG, CHG, and CHH) vary in their response to
parental environment, and which genomic features appear
to be regulated by these different classes of methylation.
Lastly, we test the hypopthesis that stressful environmental
conditions lead to increased epigenetic variation.

Methods
Experimental Treatments and Tissue Collection
Selfed seed from a single Mimulus guttatus RIL-94 plant
(F8 generation) was split randomly and grown into dam-
age and control treatment groups as in Colicchio et al.
[29]. Briefly, F1s was generated as a cross between an in-
bred line, IM 767 derived from a high elevation annual
population at Iron Mountain, Oregon, and a single plant
from the coastal perennial population at Point Reyes Na-
tional Seashore, CA. Details on the collection, identifica-
tion, and selfing of IM 767 can be found in Willis, 1999
[48], and detailed information on the generation of the
RILs can be found in Holeski, 2007 [8]. Briefly, A single
F1 from this cross was self-polinated to generate 1000 F2
individuals. These lines were than propagated through
single seed descent for eight generations to create nearly
isogenic F8 lines [8]. RIL-94 was found to be a consistent
inducer of trichome production in response to parental
wounding, and therefore has been used as a model geno-
type in our previous analysis of transgenerational gene ex-
pression plasticity [4], and now here. For damage
treatment, we punched two holes of ca. 6mm diameter in
each leaf at the developmental point when the next leaf
had expanded. While mechanical wounding does not elicit
the full suite of plant herbivory responses, prior transge-
nerational phenotypic and gene expression work has dem-
onstrated that Mimulus responds in a relatively strong
and consistent fashion to mechanical wounding making it
a tractable and efficient means of inducing plant responses
[4, 8]. Five damaged and five control plants were
self-pollinated to propagate seed to determine transge-
nerational effects. Progeny of damage and control individ-
uals were grown until the second leaf pair expanded to
one centimeter in width, at which point each leaf from the
second node was flash frozen in liquid nitrogen.

DNA extraction, library preparation, and read mapping
We extracted DNA from leaf tissue using a CTAB proto-
col [49] and generated libraries for whole genome bisulfite
sequencing (WGBS) following the PBAT (Post-Bisulfite
Adaptor Tagging) protocol [50]. With 1 ng of unmethy-
lated lambda DNA (Promega) used as a spike-in control
for conversion efficiency, 55 to 100 ng of genomic DNA

Fig. 1 Schematic of the pipeline used to study differential methylation
resulting from parental environment in Mimulus guttatus
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from each individual was bisulfite treated (EZ DNA
Methylation kit, Zymo Research). We performed two
rounds of random primer extension for tagging bisulfite
treated DNA with adaptors using primers for paired-end
library construction. Unique adaptors were ligated onto
each library to allow for down-stream de-multiplexing.
Template concentrations were determined by qPCR using
Library Quantification Kits (KAPA biosystems). Due to
low library quantities, one control individual was omitted
from sequencing. We sequenced these libraries (in com-
bination with three other PBAT WGBS libraries; 12 sam-
ples per lane) on two HiSeq 2500 rapid-run 150bp
paired-end lanes at the University of Kansas Genome Se-
quencing Core. Each library was sequenced on both lanes.
We constructed a RIL-94 reference genome,

re-annotated genes (Additional file 1: Table S1) and trans-
posable elements (Additional file 2 Table S2), mapped our
WGBS libraries to this reference using bmap [51], and
used methimpute to impute methylation across the gen-
ome more accurately [52] (Additional file 3: Methods S1).

Variance Comparison
To compare methylome variability between treatment
groups, we calculated the within treatment group variance
for methylation at each cytosine. Additionally, we calcu-
lated the mean damaged and control group variability
within each gene coding region. We separated methyla-
tion based on context (CG, CHG, CHH) used a paired
t-test to compare patterns of within group variation. We
used ANOVA to consider the effect of within group
methylation variation on previously identified (Colicchio
et al. [29]) within group expression variation.

Identification of differentially methylated regions
We subtracted mean parental damage from mean control
methylation at each cytosine to estimate site-specific differ-
ence in methylation between treatments. We separated
site-specific differences in mean methylation by sequence
context and converted them into three independent vectors
for each context, which we then split into 14 vectors, one
for each chromosome. Each vector was entered into the R
package “changepoint” (2.2.2) using the pruned exact linear
time (“PELT”) [47] algorithm and a manual penalty of 1.4.
This more stringent penalty decreased false positives com-
pared to the penalty of 1 used in the initial methylome
PELT paper [51]. The PELT changepoint detection algo-
rithm was designed to identify changepoints (here, in
methylation difference between the two treatment groups)
in large datasets where the computational demands in-
crease only linearly with the number of observations. Using
PELT changepoint detection across the Mimulus genome,
we identified base positions where there is a shift from
near-zero to larger differences in methylation between
treatment groups due to parental environment. We only

considered regions with at least a 4% change in methylation
between treatment groups going forward.
To confirm that PELT-based assessment of differential

methylation was both consistent across samples within a
treatment, and not wholly driven by imputed data rather
than observed methylation calls, we summed the observed
number of mapped unmethylated and methylated cytosines
for a given context within each PELT-defined region for
each individual. Next, we used a generalized linear model
(glm) approach to find regions that had a significant effect
of parental treatment on offspring methylation. We per-
formed this analysis using the R package “lme4” (1.1) func-
tion glmer with a binomial family and “logit” link function
to test for differential methylation within candidate regions
[53]. We treated each mapped cytosine’s methylation state
as a binomial response variable, with parental treatment as
a fixed effect, and individual as a random effect. While we
used quantitative data for % methylation in the methim-
pute/PELT approach to construct the methylome and con-
trast mean methylation between the damaged and control
group, within the glm framework, we returned to the raw
data to confirm consistent differential methylation between
groups. This allowed us to explicitly test whether within a
putative DMR region there is a significant effect of parental
treatment on the frequency of methylated relative to
unmethylated cytosines. FDR adjusted p-values were
calculated with the R package p-adjust using the
Benjamini-Hochberg correction (method=“BH”); FDR ad-
justed p-values less than 0.05 were considered differentially
methylated regions and retained for downstream analyses.
As this FDR correction is preformed on regions originally
identified on the basis of their large mean differences, it
must be noted that due to the filtering of regions prior to
testing, approximately half of the genomic segment were
not considered in the glmer, and in turn not included in our
FDR correction. For this reason the actual FDR could more
conservatively be considered 0.1, accounting for the fact
that the total number of statistical tests preformed without
this previous filtering step would have been approximately
two times greater, leading to approximately two times as
many potential false positives in our set of candidate genes.
Still this FDR correction is useful in limiting our following
analyses to a more confident set of DMRs.
The PELT changepoint detection approach was previ-

ously successful in fragmenting an individual methylome
into “methyl-regions” [51]. Here we extended this ap-
proach to identify DMRs between groups of individuals.
While the mathematical methods and tools utilized vary
greatly between our approach and the recently developed
R package “dmrseq” [54], the two approaches share the
concepts of first identifying candidate DMRs (here
through methimpute and “PELT” changepoint detection),
followed by explicit hypothesis testing within these regions
(here using a binomial glm framework). Our pipeline is
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publically available on Github (https://github.com/Methyl-
flower/DMR-scan) and includes both the code necessary
to run this pipeline on real methylome data as well as a
simulation framework to test this pipeline. Using this
simulation framework we generated methylome data with
areas of known differential methylation, and others with
stochastic noise but no significant differences in methyla-
tion probability between treatment groups. Our pipeline
successfully identified significantly differentially methyl-
ated regions, and was able to filter out regions with high
variance but no consistent differences in methylation.

Annotation of DMRs
We used BEDtools [55] “nearest” to identify overlapping
or nearest genes and TEs to each DMR. To determine
whether different DMR contexts overlap with different
genomic features, we constructed contingency tables
with groupings based on the DMR context and the pres-
ence/absence of a coding region, regulatory region (+/-
2kb from coding regions), or TE. To determine the clas-
ses of genes that tended to be differentially methylated,
we preformed GO enrichment analysis of genes overlap-
ping with CG DMRs and non-CG DMRs using the Plan-
tRegMap server [56]. To preliminary assess the role of
differential methylation on gene expression, we con-
structed contingency tables with groupings based on the
presence/absence of an overlapping DMR with whether
or not the gene was previously identified as differentially
expressed (from Colicchio et al., 2015b). Chi-square tests
were performed for these contingency tables. Addition-
ally, we performed these same tests for genes that did
not overlap DMRs, but were within 2kb of a DMR.

Results
Using WGBS we sequenced the methylomes of five individ-
uals derived from parents exposed to mechanical damage,
and four individuals of control parents (SRA: SUB4505793 ).
We mapped bisulfited reads to the newly constructed
RIL-94 reference genome, and obtained a mean read depth
of between 6 and 9.5 (Table 1). Conversion rate was between

98.5 and 99.4 percent (calculated on lambda control DNA)
and was not found to be associated with mean methylation
percents across the genomes of our samples. Mean methyla-
tion was slightly higher in the offspring of damaged than
control plants (Table 1). Differences in mean methylation
were largely due to the offspring of one control plant (OC2)
with low methylation in all sequence contexts. We con-
structed methylation domain landscape plots (Additional file
3: Figure S1) for CG methylation based on change-point de-
tection analyses that break down the genome into regions of
relatively consistent methylation. Plot results suggest that
global methylation patterns are not altered in the offspring of
damaged compared to control plants. In both damaged and
control progeny two types of methylated regions predomin-
ate; large 1kb-20kb regions of 75%-95% methylation, and
smaller 250bp-5kb regions of less than 20% methylation.
Confirming our previous findings in M. guttatus (Colicchio
et al., [4]) and from other systems [28, 31], we found that
CG methylation peaks near the 3’ end of genes, the lowest
CG methylation is often directly proximal transcriptional
start sites, and CHG and CHH methylation tend to be ele-
vated directly upstream and downstream of coding regions
(Additional file 3: Figure S2).

Methylation Variability
Comparing the within treatment, between individual
variation of methylation at individual cytosines, we
found the progeny of damaged plants were more vari-
able genome wide for both CG and CHG methylation
(paired t-tests, p <0.001; Table 2, Fig. 2a). This pattern
was most evident for nucleotides within gene coding
regions (Table 2). On the other hand, there was a slight
decrease in inter-individual CHH variability in response
to parental damage.
Previously collected gene expression data demonstrated

that M. guttatus RIL-94 offspring of damaged parents also
have significantly higher expression variability compared to
control offspring (Colicchio et al. [29]) (Fig. 2b). We found
a significant relationship between the within treatment
group methylation variability of a gene and its gene

Table 1 Genome-wide percent methylation in offspring of leaf-damaged (OD) and offspring of control (OC) M. guttatus

Individual Mapped Basepairs Average Read Depth %CG %CHG %CHH

OC1 1,888,902,727 6.4 70.4 35.9 14.9

OC2 1,877,864,952 6.4 58.9 26.8 11.6

OC3 1,867,678,993 6.3 67.6 30.6 12.3

OC4 1,778,153,365 6 70.0 36.8 13.9

OD1 1,219,264,220 4.2 73.1 40.3 14.2

OD2 1,860,074,372 6.3 72.8 39.9 14.3

OD3 2,386,764,313 8.1 72.9 39.5 14.1

OD4 1,941,206,754 6.6 71.2 39.4 16.3

OD5 2,797,016,391 9.5 69.0 34.2 14.0
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expression variability. Genes with elevated CG and CHG
methylation variation in this study exhibited elevated gene
expression variation in Colicchio et al. [29] (CG: t=10.18,
effect: 1.24, p <0.0001; CHG: t=2.49, effect: 2.50, p <0.0001;
Fig. 2c), while CHH methylation variation was inversely as-
sociated with previously identified gene expression variation
(CHH: t=-2.45, effect:-2.12, p=0.014; Fig. 2c). This pattern
suggests that higher inter-individual CG and CHG methyla-
tion variation may be associated with elevated gene expres-
sion variation in response to parent leaf damage.

Specific genomic regions experience CG, CHG, and CHH
differential methylation
To determine whether there were any regions of the
genome with distinct methylation patterns dependent on
parental environment, we utilized a combinations of
tools to first smooth across the methylome (methIm-
pute: [52]), then scan for regions with similar or differ-
ent levels of methylation between treatments (PELT
changepoint detection: [57]), and finally test whether this

response is consistent across replicates (lme4 binomial
glm: [53]). For CG, CHG, and CHH sequence contexts,
we found that the genome was composed primarily of
large regions with relatively low differences in mean
methylation between the offspring of damaged and con-
trol individuals (Fig. 3a-c). However, in all contexts, the
PELT changepoint detector algorithm identified smaller
regions with substantial differences in mean methylation
between the two treatment groups (Fig. 3a-c).
Of the candidate DMRs that met our criterion of 4% dif-

ference in methylation, our glm approach parsed out DMRs
exhibiting consistent patterns of differential methylation in
response to parental treatment (Fig. 3d-f; FDR < 0.05) from
those DMRs with variable methylation not associated with
parental treatment. After filtering genes based on this cri-
terion, we found 54 (of 127) CHG, 203 (of 452) CG, and
3,396 (of 8,356) CHH DMRs (Fig. 3d-f, Additional file 4:
Table S3). CHG DMRs were on average the largest (88 to
6,991bp, mean: 851bp, median: 543bp), followed by CG
DMRs (17 to 9,879bp, mean: 504bp, median: 222bp), and
CHH DMRs (22 to 15,457bp, mean: 274bp, median 146bp).
Clustering of individuals based on patterns of methylation
within DMRs confirmed that across all contexts, offspring
of damage individuals were more similar to each other than
to offspring control individuals (Fig. 3d-f). Six DMRs repre-
senting the full factorial combination of methylation class
and direction change of methylation were chosen to pro-
vide a visualization of the spatial and inter-individual vari-
ation in methylation across DMRs (Fig. 4).

Table 2 Levels of within treatment methylation variation, both
genome-wide and restricted to coding-regions

Genome-Wide Coding Region

Control Damaged Control Damaged

CG 0.0062 0.0066 0.0050 0.0063

CHG 0.0064 0.0070 0.0030 0.0035

CHH 0.00020 0.00018 0.00013 0.00012
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Fig. 2 Shifts in the variability of methylation and gene expression in response to parental damage, and the relationship between methylation
and gene expression variability. a Density plot of within damage treatment group variance (Y-axis) relative to within control treatment group
variance (X-axis) for gene body CG, CHG, and CHH methylation. b Density plot of within damage treatment group variance (Y-axis) relative to
within control treatment group variance (X-axis) for gene expression [4]. c Relationship between the within treatment group methylation and
gene expression variance of a given gene
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The largest mean changes in methylation was in CG
DMRs (6.5% to 74.5% change, mean: 38.7%, median: 38.6%),
followed by CHH DMRs (4.0% to 67.0% change, mean:
31.0%, median: 31.3%), and CHG DMRs (12.3% to 52.2%
change, mean: 30.7%, median 30.2%) (Additional file 3:
Figure S3). We found slightly more up-methylated than
down-methylated CG DMRs in response to parental damage
(110 up, 93 down), with the opposite for CHG DMRs (22
up, 32 down), and nearly equal direction of change for CHH
DMRs (1693 up, 1703 down). For all DMR contexts, larger
DMRs tended to have a smaller absolute difference in
methylation (p <0.0001; Fig. 3a-c). CG and CHG DMRs
showed no significant effect of the size of the DMR on the
direction change in methylation, while CHH up-methylated
DMRs were significantly larger (mean: 344bp) than CHH
down-methylated DMRs (mean: 201bp, p <0.0001, Fig. 3c).

Damage induced changes in non-CG methylation is
associated with transposable elements
Non-CG DMRs overlapped most frequently with TEs (Fig. 5,
Additional file 3: Figure S4). Only 56 (27.6%) CG DMRs

overlapped with TEs, while 2103 (60.4%) non-CG DMRs
overlapped with TEs (X2=91, p <0.0001, see Fig. 6 for an ex-
ample of CHH DMR overlapping TE). There was a slightly,
but not significantly higher frequency of CHG DMR TE
overlap (72%) than CHH DMR TE overlap (60.2%, X2=3.2,
p=0.07). Only considering CHH DMRs due to the higher
sample size, we found that DMRs up-methylated in response
to parental damage overlapped with TEs (69%) more
frequently than down-methylated DMRs (51%,
X2=110.1, p <0.0001). We found a significant effect of
TE class on overlap with CHH DMRs, even after ac-
counting for TE size (X2= 298, p <0.0001). Mutator-like
element (MULE) TEs (Class II TE) were most highly
enriched in the set of DMR overlapping TEs (MULE:
41% of DMR TEs, 30% genome-wide, Figs. 5 and 6).

Differentially CG methylated regions overlap with gene
coding regions
Of the 203 CG DMRs, 123 (61%) overlapped with gene
coding regions, as did 11 (20%) CHG DMRs and 763 (22%)
CHH DMRs (Fig. 5, Additional file 3: Figures S4 and S5). A

Fig. 3 Differentially methylated genomic regions at CG, CHG, and CHH contexts based on PELT and GLM analyses. In the top panel (a-c) PELT-
derived methylation difference (parental damage - control) are reported as a function of imputed size (log-transformed). For each context, there
is a general pattern of larger regions with little change to methylation in response to parent damage (white), and smaller regions with either
higher methylation levels in control samples (green) or higher methylation levels in progeny of damaged parents (red). d-f Regions of significant
differential methylation across the three contexts (up or down, FDR<0.05 based on GLM approach) are shown in heatmaps with percent
methylation standardized by regions
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Chi-Square contingency table test confirmed a significant
effect of DMR context on probability of overlap between a
DMR and a coding sequence (X2=150.77, p <0.00001). An
additional 33 (16%) CG DMRs, 7 (13%) CHG DMRs, and
957 (28%) CHH DMRs were within 2kb upstream or down-
stream of a coding sequence (Additional file 4: Table S3,
Fig. 5). The effect of DMR context on presence of DMR
within 2kb of a gene coding region (X2 =18.845,
p=0.000081) suggested that different DMR contexts may
also be present at different frequencies around gene regu-
latory regions, with CHH DMRs most often located within

2kb upstream or downstream of gene coding sequences
(Fig. 5). CHH DMRs with lower methylation in response
to parental damage were significantly closer to genes
(median: 1.5kb) than CHH regions with higher
methylation (median 2.4kb) in response to parental dam-
age (p <0.0001). Direction of methylation change did not
vary with respect to distance between gene and DMR for
the other two methylation contexts.
Among other terms, gene ontology enrichment analysis

suggests that genes involved in regulation of hormone
levels (p=0.00019), oxidoreductase activity (p=0.0005), and

Fig. 4 Visualization of PELT methylation patterns across representative regions identified as differentially methylated (shaded regions) for the nine
individuals sequenced in this study: five offspring of damaged individuals (top; red), and four control offspring (bottom; green). Bars and
percentages to the right of methylome plots show the percent of methylated cytosines mapped in that region for each individual. The Black
track at the bottom of each panel shows the mean difference in percent methylation across this portion of the genome. “Dif.” = Percent mean
difference between treatments, and “P” = P-Value of generalized linear model comparing distribution of methylated and unmethylated cytosines
between treatments
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response to external stimulus (p=0.01103) were enriched in
the set of genes overlapping CG DMRs (Additional file 5:
Table S4). Non-CG DMRs were enriched for GO terms
auxin polar transport (p=0.00039), palmitoyl hydrolase ac-
tivity (p=0.000016), protein binding (p=0.0015) and hor-
mone transport (p=0.00131) (Additional file 5: Table S4).

CG DMRs may overlap with previously identified
differentially expressed genes
While our current data are not sufficient to evaluate the ef-
fect of differential methylation on differential expression be-
cause expression data for the same experimental design were
collected on a different set of RIL-94 plants, a preliminary
contrast is still useful (see Discussion for rationale). We
tested whether genes associated with DMRs were enriched
for the set of genes previously found to be differentially
expressed in M. guttatus RIL-94 leaf tissue of damage com-
pared to control offspring (Colicchio et al. [29]). Because we

A

B

C

Fig. 5 Circular diagrams showing the relative proportion of CG, CHG, and CHH DMRs across different genomic contexts. Intergenic regions are
classified as those that do not fall into the other three categories, while three other categories (coding region, regulatory region, and transposable
element) are depicted as the outer circles. Inner-circles represent subset of the DMRs within that group: (1) Magenta: DMRs that overlap coding
regions that were found to be differentially expressed in Colicchio, 2015b (2) Orange: DMRs that are within 2kb up-stream or down-stream of genes
that were previously found to be differentially expressed in Colicchio, 2015b (3) Dark green: DMRs that overlap the MULE class of transposable
elements. Asterisks in outer circles depict genomic contexts for which DMRs of that sequence context are enriched relative to other sequence
contexts. Asterisks in inner circles represent classes enriched relative to the genome-wide average. a CG DMRs, b CHG DMRs, c CHH DMRs

Fig. 6 CHH Methylation patterns in and around a MULE
transposable element. This pattern is one of the most commonly
observed for MULE elements in this study, with elevated CHH
methylation overlapping the transposable element, and regions of
decreased methylation flanking the TE
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only considered genes from an older annotation used for the
gene expression study (Colicchio et al. [29]), this analysis
was limited to 804 genes: 107 (of 123) CG DMRs, 9 (of 11)
CHG DMRs, and 688 (of 763) CHH DMRs overlapping
gene coding sequences in the previous annotation
(Additional file 3: Figure S6). Sixteen of the 107 (15.0%)
genes with overlapping CG, 0 of the 9 genes with overlap-
ping CHG, and 45 (6.5%) of the 688 genes with overlapping
CHH DMRs were differentially expressed by at least two
methods in Colicchio et al. [29] (Fig. 5, Additional file 3:
Figure S5). Of the remaining genes that do not have coding
region-DMR overlap, 5.2% were previously found to be
differentially expressed by at least two methods. A
Chi-Square Contingency table test found the distribution of
differential expression to be uneven between gene coding
sequences associated with CG DMRs, non-CG DMRs, and
genes coding sequences not associated with DMRs
(X2=21.55, p=0.000021). Enrichment of differentially
expressed genes overlapping with CG DMRs explained the
majority of the Chi-Square value (19.22/21.55); nearly 3
times as many genes overlapping with CG DMRs were
found to be differentially expressed (16) as expected by
chance (5.6). Two of these sixteen genes that were found to
be both differentially methylated and expressed are visualized
in Additional file 3: Figure S7. We found no evidence for en-
richment of differentially expressed genes in the set that
overlapped with regulatory regions for CG (1/28: 3.6%) ,
CHG (0/4), or CHH DMRs (51/844: 6.0%, p >0.1).

Discussion
Parental damage in M. guttatus produces a signal that is
transmitted to progeny and ultimately alters gene expres-
sion and phenotype [4, 7, 8, 45]. Here we expand our un-
derstanding of transgenerational plasticity in M. guttatus,
identifying both genome-wide increases in epigenetic vari-
ability and localized regions of differential methylation be-
tween progeny of damaged and control parents. Below, we
discuss the observed increases in epigenetic variability,
how the transgenerational response in methylation differs
by cytosine context in both nature and consequence, and
the potential adaptive significance of transgenerational
methylation as a response to stressful conditions.

Parental damage increases offspring methylation variance
DNA methylation variation increased in the offspring
of damaged relative to control plants (Fig. 2). This
genome-wide pattern was most pronounced for CG
methylation (>25% increased variation across coding se-
quences). Previous gene expression work identified a coin-
ciding increase in gene expression variation in progeny of
damaged plants (Colicchio et al. [29]). This parallels re-
sults from asexual dandelions where the offspring of
plants exposed to salt stress or various plant hormones
exhibit increased epigenetic diversity (Verhoeven et al.,

[16]). Taken together, these results provide substantial evi-
dence that the offspring of plants exposed to stressful en-
vironments may exhibit more epigenetic, gene expression,
and potentially phenotypic variation than the offspring of
plants grown in the absence of environmental stresses.
The transmission of increasingly variable epigenomes in

the face of environmental stress may widen the distribution
of progeny phenotypes in a potentially adaptive manner.
Changing environmental stresses can increase the distance
between an organism’s phenotype and the optimal pheno-
type for their progeny. Some organisms may plastically re-
spond by altering phenotype in a specific direction.
However, in situations where an organism is facing novel
stresses, increases in offspring phenotypic variability may
also increase fitness [58]. Increased epigenetic variability
across offspring may generate a wider range of progeny
phenotypic diversity, possibly increasing fitness in an envir-
onment that was stressful to the parent. In many ways this
mirrors findings regarding the evolution and maintenance
of sexual reproduction. Both theory [59–61], and experi-
mental evolution studies (Morran et al., 2009) demonstrate
that in fluctuating and uniquely stressful environments,
sexual reproduction provides fitness benefits relative to
asexual reproduction. The access to a wider range of
phenotypic space afforded to the offspring of sexually re-
producing individuals, or individuals transmitting variable
epigenetic profiles, may prove advantageous under specific
conditions of environmental stress and/or fluctuation.
Initially epigenetic variability induced by stressful

environments would be random, with benefits tied solely
to increased phenotypic variance. It is, however possible
that over time selection could favor consistent epigenetic
induction at a specific locus or loci [62]. Alternatively, in-
creased epigenetic variability in response to parental stress
may be an accidental and perhaps maladaptive by-product
of a loss of stasis. Evolutionary modeling, molecular epi-
genetic studies, and comparisons of fitness variability in
the offspring of high and low stress individuals will shed
light on the prevalence of stress-induced transgenerational
variability, its molecular basis, and potential adaptive
nature.

CHH methylation is most responsive to parental leaf
damage
Mean methylation was similar in offspring of damaged
and control parents for over 99% of the genome (Fig. 3).
Interspersed across the genome however, were parent
environment-induced DMRs ranging in size from tens to
thousands of base pairs. Within these regions we find con-
sistent shifts in percent cytosine methylation in response
to parental damage (Figs. 3 and 4). A clear pattern is that
CHH methylation is the most responsive to parental stress
(Fig. 3), with thousands of CHH DMRs scattered across
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the genome. However, as discussed below, the role of
these CHH DMRs in gene regulation is unclear.

Differential non-CG methylation is most strongly
associated with transposable elements
Non-CG DMRs overlapped most often with TEs (Fig. 5).
Speficially, CHH regions up-methylated in response to
parent damage overlapped with TEs more frequently
than down-methylated regions. The impact of ob-
served TE differential methylation on gene expression
remains unclear. We did not find significant enrich-
ment of differential CHH methylation near genes
previously identified as differentially expressed in re-
sponse to parent damage.
Miniature inverted-repeat TEs (MITEs) in the

Mutator-like elements (MULEs) superfamily were par-
ticularly likely to show a pattern of increased methyla-
tion (Figs. 5 and 6). MITEs are small TEs found at high
copy-number in nearly all plants [63]. Unlike many
other types of TEs often located near centromeres in
highly repetitive heterochromatic regions, MITEs tend
to be located in gene-rich euchromatic regions and gen-
erate a large number of 24-nt si-RNAs [64]. 24-nt
si-RNAs are responsible for RNA-dependent DNA
methylation, suggesting a mechanism for the enrichment
of methylation at these loci. If damage induces increased
24-nt si-RNA production at MITE loci, this may lead to
their differential methylation in the next generation as
24nt si-RNAs are known to be phloem mobile [38] and
capable of infiltrating the germline [41]. Additionally, re-
cent work has demonstrated that parental and grand-
parental environment can leave a lasting impact on
small-RNA profiles [65]. Therefore, methylation of these
regions could be re-programmed through the action of
si-RNAs after demethylation that occurs during germline
formation.

Differential CG methylation is strongly associated with
gene coding sequences
Unlike changes in non-CG methylation which most often
coincided with TEs and only overlapped coding regions
22% of the time, CG DMRs most frequently overlapped
with protein coding regions (60.6%, Fig. 5). This suggests
that differential CG methylation is more closely tied than
differential non-CG methylation to gene regulation. The
types of genes that were differentially methylated were not
a random subset of the transcriptome, but were enriched
for genes in specific gene ontology categories. Genes over-
lapping with both CG and non-CG DMRs were enriched
for genes related to plant hormone regulation, and in just
the set of CG DMRs, we found enrichment for genes re-
lated to responses to external stimuli.
Taken into consideration alongside the enrichment of

CG-DMRs in coding sequences genome wide, these re-
sults suggest that the altered methylation of genes may
lead to an epigenetic memory in offspring that affects their
interactions with the environment. A recent study in
Arabidopsis demonstrated that histone variant H3.3 leads
to an increase of gene body DNA methylation, a depletion
in H1, and the differential expression of a subset of genes
[66]. Interestingly, this group found that H3.3 knockdown
lead to the differential expression of genes enriched for
hormone and stimulus response associated genes [66],
similar to the types of genes found differentially methyl-
ated here, and previously identified as differentially
expressed [4]. This subset of the genome regulated by his-
tone variant H3.3 may be both environmentally respon-
sive, and prone to persistence across generations.

Targets of transgenerational epigenetic plasticity
Table 3 highlights 12 genes that exhibited differential CG
methylation, were identified in our prior work as differen-
tially expressed in response to parental damage, and have

Table 3 Twelve candidate genes that overlapped with a coding region CG DMR and were previously found to be differentially expressed

Gene Function Direction Methylation Direction Expression

Migut.L01898 Cytochrome P450 Down (32%) Up

Migut.L01459 Pectin Lysase Down (43%) Up

Migut.N01808 Pheophytinase Down (24%) Down

Migut.A00087 Thermospermine Synthase Down (44%) Down

Migut.N023227 Homeobox Down (55%) Down

Migut.H00566 Constans-like protein Up (18%) Up

Migut.M01851 B-Box Zinc Finger Up (53%) Up

Migut.J01585 MATE efflux pump Up (61%) Up

Migut.N01811 CCH Zinc Finger Up (25%) Down

Migut.L01164 Sulfotransferase Up (38%) Down

Migut.N0224 LRR-Kinase Up (42%) Down

Migut.N01831 Aspartic Protease Up (47%) Down

Colicchio et al. BMC Genomics  (2018) 19:746 Page 11 of 15



close homologs in model species with well-defined func-
tions. These genes span diverse functions; seven code for
enzymes, and five putatively function in protein-protein in-
teractions or nucleotide binding. Pectin lysase functions in
cell-wall metabolism. Its increased expression in response
to parental damage may relate to cell wall breakdown
during trichome development. Cytosolic sulfotransferase 12
negatively regulates brassinosteroid 24-epicathasterone
activity [67]. Brassinosteroids both positively [68] and nega-
tively [69] regulate trichome production. Therefore, differ-
ential methylation and expression of genes involved in
brassinosteroid production and pectin lysase make interest-
ing candidates for transgenerational trichome induction.
Of the remaining five enzyme-coding genes, two have

possible roles in plant hormone synthesis, two in the break-
down of compounds, and one as a transport protein. Of
those involved in hormone synthesis, a 71 subgroup cyto-
chrome P450 was up-regulated, while thermospermine syn-
thase was down-regulated. Subgroup 71 cytochromes are
stress-inducible and involved in jasmonic acid synthesis
[70]. Thermospermine synthase produces thermospermine,
a growth regulator involved in xylem differentiation. Inter-
estingly, thermospermine synthase acts on a precursor in
the synthesis of ethylene, spermine, and thermospermine.
There is evidence that numerous enzymes compete for this
precursor [71]. Through reduced thermospermine synthase,
there is potentially increased flux into the production of
spermine and/or ethylene, both involved in plant stress re-
sponses. The differential methylation and expression of a
pheophytinase and an aspartic protease suggest that catab-
olism of proteins and chloroplasts may be altered by paren-
tal damage. The differential methylation of a MATE efflux
protein is an intriguing candidate; this class of proteins is
known to be vital in the transport of plant hormones, sec-
ondary metabolites, and other organic compounds [72].
The five differentially methylated, differentially expressed

regulatory genes provide intriguing candidates as upstream
elicitors of transgenerational plasticity. Two B-box zinc fin-
ger genes showed increased methylation and increased ex-
pression in response to parental damage. Three additional
proteins with a regulatory capacity showed decreased ex-
pression. While the function of regulatory genes is difficult
to determine through orthology assessment, the leucine
rich repeat kinase is closely related to Arabidopsis NILR1,
one of the most well studied genes involved in activating
defense responses to pathogens [73]. In Arabidospsis, this
gene detects pathogen-associated molecular patterns, initi-
ating the synthesis of host-resistance (R-genes). R-genes are
known to be transgenerationally regulated, both via priming
as well as constitutive induction in response to parental
pathogen infection [74]. While to our knowledge, all previ-
ous examples have demonstrated epigenetic up-regulation
in response to pathogen response, this finding suggests that
in response to other stresses R-genes may be epigenetically

down-regulated. A tradeoff between microbial and herbi-
vore defense may shift the optimal allocation of resources
away from pathogen defenses in an enviornment of high
herbivory.

Association between differential methylation and gene
expression
Our current methylation and previous gene expression data
come from different plants, making it impossible to directly
compare methylation and gene expression levels in an indi-
vidual plant. The current data is therefore insufficient to
thoroughly evaluate the effect of methylation on gene ex-
pression in response to parental environment. While the
separation of experiments undermines power to detect
methylation-to-expression effects (false negatives inflated),
it should not create false positives. We are afforded less
insight into the subtleties of the impact of DNA methyla-
tion on gene expression, but we gain confidence that loci
identified in both experiments are consistent targets of
transgenerational epigenetic inheritance. Therefore, despite
reduced power, a preliminary comparison is useful.
Nearly three times as many genes overlapping CG

DMRs were previously identified as differentially
expressed (16) [4] compared to the null expectation (5.6)
(Fig. 5). This significant overlap of CG DMRs within gene
bodies adds to a growing body of evidence [66, 75] for an
interaction between gene body CG methylation and gene
regulation. Not only were CG DMRs more likely than
non-CG DMRs to overlap with coding sequences, but CG
DMR genes were more likely to be differentially expressed
than non-CG DMR genes, or genes not overlapping with
any DMRs. We consider our results suggestive, yet incon-
clusive evidence that differential methylation is linked to
patterns of transgenerational plasticity.
While we found a tentative association between differen-

tial gene body CG methylation and differential gene ex-
pression in the offspring of damaged plants, we did not
find a direct correlation between the direction of change
in gene expression and gene body CG methylation. A
likely explanation stems from the complex relationship be-
tween coding sequence methylation and gene expression.
In our prior modeling of the relationship between DNA
methylation and gene expression in M. guttatus, we identi-
fied that along with significant first, second, and third
order CG coding sequence methylation effects on gene ex-
pression, CG coding sequence methylation interacted with
6 other model terms to alter gene expression (Colicchio et
al., [4]). Zilberman [35] and Bewick and Schmitz [31]
argue that there is no clear direct role of gene body methy-
lation on gene regulation from either a molecular or evolu-
tionary perspective. They suggest alternative roles
including differential gene body CG methylation enhan-
cing splicing accuracy [76], inhibiting RNA polymerase II
activity [28], displacing variant histone H2A.Z [77], or
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potentially resulting from local adaptation through some
as of yet unknown mechanism [78]. Additionally, complex
feedback loops between H3.3, H1, H2A.Z, small RNA pro-
duction, and DNA methylation likely play a role in modify-
ing or sustaining gene expression across environmentally
responsive genes which obfuscates a direct link between
levels of CG methylation and gene expression [66]. It will
require studies with the same plants analyzed for gene ex-
pression, methylation, and other epigenetic markers in re-
sponse to environmental perturbations to gain insights
into the link between gene body CG methylation and gene
expression.

Conclusions
The transmission of epigenetic marks between generations
represents one mechanism for maintaining environmen-
tally induced gene expression after an initial signal re-
cedes. We assayed DNA methylation variation dependent
on parental environment and found differential CG and
non-CG methylation across gene coding regions and TEs,
respectively. The enrichment of genes previously identi-
fied as differentially expressed in response to parental
damage that overlaped CG DMRs provides suggestive evi-
dence that inheritance of altered methylation profiles is
associated with transgenerational gene expression plasti-
city. Recent work has demonstrated a complex relation-
ships between histone modifications and variants and
DNA methylation, and their combined effects on gene
expression [66]. Thus, the differential DNA methylation
patterns documented here represent a snapshot of how
parent damage leads to alteration in one component of
the epigenome. As this study was preformed in the direct
offspring of wounded plants it is possible that observed
differences in DNA methylation are a product of damage
induced maternal effects such as seed priming [79], rather
than being directly inherited as altered epigenetic profiles
from the parental germ line. Evidence in Mimulus demon-
strates that transgenerational phenotypic effects persist for
multiple generations [45], suggesting that altered epigen-
etic profiles may contribute to offspring phenotype.
However, future studies are necessary to confirm this
multi-generational epigenetic persistence and to deter-
mine whether herbivory directly alters the methylome of
parental Mimulus individuals.
The precise role of differential gene body methylation for

transgenerational plasticity, and genome regulation more
generally, remains a critical questions in epigenetics [31, 35].
Beyond a relatively small subset of the genome exibiting tar-
geted differential methylation, we identified genome-wide in-
creases in methylome variation and differential methylation
of specific TE classes. This suggests that parental conditions
can alter an organisms epigenetic profile in a host of ways.
Of particular evolutionary significance, increased epigenetic
diversity in progeny may be an unintended side effect of a

parental environment, and may increase offspring
phenotypic variance in a manner potentially adaptive
under stressful conditions. Together, our results move
us closer to deciphering the mechanism(s) through
which parental environment may adaptively tune off-
spring development.
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