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Abstract

Background: The presence of methyl groups on cytosine nucleotides across an organism’s genome (methylation)
is a major regulator of genome stability, crossing over, and gene regulation. The capacity for DNA methylation to
be altered by environmental conditions, and potentially passed between generations, makes it a prime candidate
for transgenerational epigenetic inheritance. Here we conduct the first analysis of the Mimulus guttatus methylome,
with a focus on the relationship between DNA methylation and gene expression.

Results: We present a whole genome methylome for the inbred line Iron Mountain 62 (IM62). DNA methylation
varies across chromosomes, genomic regions, and genes. We develop a model that predicts gene expression based
on DNA methylation (R2 = 0.2). Post hoc analysis of this model confirms prior relationships, and identifies novel
relationships between methylation and gene expression. Additionally, we find that DNA methylation is significantly
depleted near gene transcriptional start sites, which may explain the recently discovered elevated rate of
recombination in these same regions.

Conclusions: The establishment here of a reference methylome will be a useful resource for the continued
advancement of M. guttatus as a model system. Using a model-based approach, we demonstrate that methylation
patterns are an important predictor of variation in gene expression. This model provides a novel approach for
differential methylation analysis that generates distinct and testable hypotheses regarding gene expression.
Background
DNA cytosine methylation is an epigenetic modification
that acts in conjunction with histone modification and
small RNAs to regulate gene expression [1–3] and control
transposable elements [4, 5]. In addition, DNA methyla-
tion appears to alter mutation rates [6] and to decrease
rates of recombination [7]. It is found in organisms span-
ning the eukaryotic phylogeny [8, 9], and can occur in
many sequence contexts. In plants, cytosine methylation
can be found in CG, CHG, or CHH contexts, where H is
any nucleotide besides G [10]. It appears that much of the
methylome is stable within an individual; however, the
methylome does exhibit predictable plastic responses to
developmental and environmental cues [11, 12].
Recent work has greatly expanded our knowledge of

the mechanisms involved in maintaining and modifying
DNA methylation in plants [13–18], yet we still do not
* Correspondence: Colicchio@ku.edu
1Department of Ecology and Evolutionary Biology, University of Kansas,
Lawrence, KS 66045, USA
Full list of author information is available at the end of the article

© 2015 Colicchio et al. This is an Open Access
License (http://creativecommons.org/licenses/
medium, provided the original work is proper
creativecommons.org/publicdomain/zero/1.0/
fully understand how specific patterns of DNA methyla-
tion in and near coding sequences control gene expres-
sion. In Arabidopsis thaliana, CG DNA methylation in
regulatory sequences is negatively correlated with gene ex-
pression [3, 19], possibly through limiting promoter acces-
sibility. Contrastingly, gene body CG methylation is
elevated in moderate to highly expressed genes [3, 10, 20],
potentially though the removal of histone variant H2A.Z
[21]. Similar patterns of association between the distribu-
tion of plant CG methylation and gene expression have
been found in the wild rice [20], tomato [22], and maize
[23]. Additionally, Arabidopsis genes within differentially
methylated regions tended to be more highly expressed in
individuals with increased CG methylation, but lower in
individuals with increased non-CG (CHG and CHH)
methylation [24]. However, the interaction between gene
expression and different forms of DNA methylation in
and around genes has not been fully explored. For ex-
ample, the impact of non-CG methylation on gene expres-
sion is especially understudied, despite its established role
article distributed under the terms of the Creative Commons Attribution
by/4.0), which permits unrestricted use, distribution, and reproduction in any
ly credited. The Creative Commons Public Domain Dedication waiver (http://
) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-1668-0&domain=pdf
mailto:Colicchio@ku.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Colicchio et al. BMC Genomics  (2015) 16:507 Page 2 of 15
in regulating transposable elements through pre- and
post-transcriptional silencing [25].
The standard method for characterizing genomic pat-

terns of DNA methylation is to classify genes into
methylation quantiles and then compare gene expression
across these groups [3, 20, 22, 26–29]. Here, we adopt
an explicit model-based approach, predicting gene ex-
pression from gene methylation and other basic gene-
specific features (exon length, intron length, and exon
number). We compare the methylome of an inbred line,
to gene expression from a distinct recombinant inbred
line, and test how well DNA methylation, in combin-
ation with other stable genetic factors, predict gene ex-
pression across lines and tissue types. The explanatory
power of stable epigenetic variation on gene expression
is relatively unknown (although see [30] for model-based
approaches to predicting gene expression via promoter
motifs in Saccharomyces cerevisiae, and [31] for a Sanger
sequencing approach to gene expression modeling based
on histone and DNA methylation in rice). With the
model-based approach presented here, we are able to as-
sess the scale to which constitutive epigenetic variation
effects global gene expression, and the patterns of DNA
methylation through which this regulation is manifest.
Previous studies of Mimulus guttatus have demon-

strated transgenerational epigenetic inheritance [32–35].
Herbivore induced defensive traits can be transmitted
between generations, and the observed transcriptional
basis of this response [11], has made it a promising
model system in the burgeoning field of ecological epi-
genetics [36–39]. However, along with identifying trans-
missible epigenetic marks, it is vital to understand the
role that stable epigenetic regulation has on gene expres-
sion. Here we present the first M. guttatus methylome.
We utilize a novel modeling approach to untangle the
complex interactions between methylation and gene ex-
pression. We show that non-CG gene body methylation
may have a significant effect on gene expression despite
occurring at relatively low levels. Utilizing a GO term
enrichment approach, we demonstrate that certain func-
tional categories are over-represented in genes with high
gene body CG methylation. We provide evidence that
there are differences in methylation and gene expression
between chromosomes, such that mean gene expression
is significantly lower across some chromosomes than
others. Finally, we look at transcriptional start sites
across the genome, where recent evidence suggests in-
creased recombination in M. guttatus [40], and find a
corresponding decrease in DNA methylation.

Methods
DNA extraction and bisulfite sequencing
We germinated seeds from the M. guttatus Iron Mountain
inbred line, IM62, the line that was sequenced to establish
the M. guttatus reference genome [40] ( http://phytozome.
jgi.doe.gov). When the second leaf pair of seedlings was
just visible we collected leaf tissue from multiple seedlings,
flash froze it in liquid nitrogen, and stored it at −80 °C.
We preformed DNA extractions using a CTAB protocol
[41]. We pooled DNA from multiple seedlings before li-
brary construction in order to limit the effects of aberrant
intra-individual variation [42]. From this pooled sample
we generated sequencing template for whole genome bisul-
fite sequencing (WGBS) following the PBAT (Post-Bisulfite
Adaptor Tagging) protocol [43]. With 1 ng of unmethy-
lated lambda DNA obtained from Promega used as a
spike-in control for conversion efficiency, 100 ng of gen-
omic DNA from M. guttatus was treated with bisulfite
using EZ DNA Methylation kit from Zymo Research. Two
rounds of random primer extension for tagging bisulfite
treated DNA with adaptors were performed using primers
for single-end library construction as described in [41].
The concentration of templates was determined by qPCR
with Library Quantification Kits from KAPA biosystems.
A single lane of 100 cycle reactions on HiSeq 2500 was
assigned for the library sequencing.

Read mapping
We used the software BMap [43] (http://itolab.med.-
kyushu-u.ac.jp/BMap/index.html) to map bisulifte treated
reads to the M. guttatus v2.0 reference genome (http://
phytozome.jgi.doe.gov). In short, BMap first searches
candidate genomic loci for each read in two duplicated
genome sequences, one with every C in the genome con-
verted to a T (C2T), and one with G to A (G2A), using an
approach called adaptive seed [44]. Next BMap creates
pairwise alignments between the read and original DNA
sequence of every candidate loci, and calculates scores for
each alignment allowing mismatches between T in the
reads with C in the reference. Finally an alignment with
the highest score is reported for each read. We used de-
fault parameters for mapping with BMap. Using align-
ments exported by BMap, methylation status for every
cytosine in every read was called, and counts both support-
ing the methylated and unmethylated state are assigned
for every cytosine residue of the reference genome. Methy-
lation levels for CG, CHG and CHH contexts are exported
to different files and analyzed independently.

Global methylome analysis
We estimated the number of total and methylated cyto-
sines mapped across the genome on a per-nucleotide
basis for the M. guttatus IM62 seedling methylome. Per-
cent methylation was calculated for each 1 kb window
across the genome for total methylation, as well as
methylation in each of the three sequence contexts.
Centromere positions were estimated from characteristic
repeat sequences [45].

http://phytozome.jgi.doe.gov
http://phytozome.jgi.doe.gov
http://itolab.med.kyushu-u.ac.jp/BMap/index.html
http://itolab.med.kyushu-u.ac.jp/BMap/index.html
http://phytozome.jgi.doe.gov
http://phytozome.jgi.doe.gov
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Gene methylation analysis
Using the M. guttatus v2.0 annotations [46], we calcu-
lated the percent methylation in each sequence context
for each of the 24,130 annotated genes. Only the 17,043
for which we had gene expression data [32] were used
for down-stream analysis. For each annotated gene we
defined three regions: up-stream as the 1kb up-stream
of the transcriptional start site, gene body as the tran-
scribed portion of the gene, and down-stream as the
1kb downstream of the 3′ UTR. Gene expression values
were generated previously by RNAseq from seedling
tissue of genetically distinct M. guttatus – a recombinant
inbred line derived from cross between divergent popula-
tions [32].
In order to determine if gene methylation and expres-

sion varied across chromosomes we preformed four
ANOVAs with chromosome as an explanatory variable
and CG, CHG, CHH, and log-transformed gene expres-
sion as response variables.
Gene ontology terms were already assigned to genes

[32], and were utilized both to calculate the total num-
ber of GO terms per gene, as well as to perform a
Fisher’s Exact test to determine what, if any, types of
genes were enriched or depleted in our set of highly CG
methylated genes, and our set of chromosomes exhibit-
ing significantly reduced gene expression levels.
In order to choose a predictive gene expression

model, we included methylation in each of three con-
texts, percent methylation in gene bodies, up-stream
and down-stream regions, intron length (sum of all in-
trons for a gene), exon length (sum of all exons for a
gene), number of exons, and interaction terms up to
the third degree. Gene length, intron size, and intron
number are all known to be positively correlated with
gene expression in plants [47], opposite the trend ob-
served in animals [48]. We used a Bayesian infor-
mation criterion (BIC) [49] to inform our restricted
maximum likelihood (REML) model selection (done in
order to limit the number of parameters included in
our model, and in turn reduce over fitting). Addition-
ally, genes were parsed randomly into thirds, and pa-
rameters were tunes for each of these three groups
independently. These models were then used to predict
gene expression in the remaining to gene groups to
provide 3-fold cross-validation [50]. We Z-transformed
values to make parameter estimates comparable, mak-
ing a value of 0 represent the mean value for a variable,
with positive or negative deviations reflecting the num-
ber of standard deviations a value is from the mean.
We identified transposable elements across the M. gut-

tatus genome from the repeat-masked genome assembly
[46]. Genomic repeats larger than 100 base pairs were
selected and percent methylation in all three sequence
contexts was identified for these repeats.
Results and discussion
Global methylation
Of the 186 million reads generated, 126 million were
mapped to the genome (67.7 % mapping, mean read
depth = 19, median = 6). This proportion is typical for
Mimulus genomic studies eg. [51] given the substantial
proportion of the physical genome that is not contained
in the v2 reference genome. Mapping to unmethylated
lambda DNA confirmed that our PBAT treatment
achieved 99.4 % conversion of unmethylated cytosines to
thymine. Methylation is most common in a CG context
(72 %), intermediate in a CHG context (36.5 %), and
lowest in a CHH context (6.1 %) (Fig. 1), with 23 % of
total cytosine’s being methylated. The percent of genome
methylation found in M. guttatus is higher in all con-
texts than Oryza sativa [20], Arabiopsis thaliana [8],
Brachypodium distachyiom [27], lower in all contexts
than Solanum lycopersicum [22], and both higher or
lower than Zea mays [26] and Glycine max [52] depend-
ing on context (Fig. 1). While CHH methylation levels
are higher in M. guttatus than Z. mays and G. max, the
opposite is true for CHG methylation. CG methylation
is highest in Z. Mays, moderate in M. guttatus, and low-
est in G. max (Fig. 1).
Approximate positions of centromeres on M. guttatus

chromosomes are given by the location and density of
centromeric repeats [45]. We confirmed that regions of the
genome with high levels of centromeric repeats also tended
to have high CG, CHG, and CHH methylation (Fig. 2). We
found that gene expression and gene body CG, CHG,
CHH methylation varied significantly across chromosomes
(log(expression): F13,17042 = 4.43, CG: F13,17042 = 10.85,
CHG: F13,17042 = 19.07, CHH: F13,170423 = 6.10, p < 0.001)).
Chromosomes that have on average higher levels of methy-
lation tended to also have lower gene expression (Fig. 3).
From this result, it is unclear whether certain chromo-
somes are constitutively more highly methylated and tran-
scriptionally silenced, or whether throughout development
epigenetic modification at a whole chromosome scale can
change the relative expression of genes across entire
chromosomes. It does appear that silenced chromo-
somes have a higher density of heterochromatic repeats,
hinting that certain chromosomes may be condensed
throughout development.

Gene methylation
Methylation was significantly depleted in gene bodies
relative to both inter-genic regions and transposable ele-
ments in all three-sequence contexts (Table 1). While
CG methylation was only modestly reduced in gene bod-
ies relative to intergenic regions (Gene Bodies: 56 %,
Intergenic: 75 %), CHG (Gene Bodies: 3.8 %, Intergenic:
45 %) and CHH (Gene Bodies: 1.2 %, Intergenic: 7.2 %)
methylation levels were drastically reduced (Table 1).
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Fig. 1 Interspecific comparison of plant DNA methylation levels. A comparison of global DNA methylation levels in CG (red), CHG (green), and
CHH (blue) sequence contexts found in Mimulus guttatus compared with those of Arabidopsis thaliana [66], Glycine max [52], Brachypodium
distachyiom [27], Oryza sativa [20], Solanum lycopersicum [22], and Zea mays [26]
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Similar results were found in Oryza sativa [20], Arabi-
dopsis thaliana [53], and Glycine max [52]. Methylation
both up-stream and down-stream of gene starts was also
reduced relative to genome-wide averages. We found
that up-stream regions were elevated in non-CG methy-
lation compared to gene bodies, but that up-stream CG
Fig. 2 DNA methylation across the Mimulus guttatus genome. DNA methy
chromosomes) in all three sequence contexts: CG (red), CHG (green), and C
along the X-axis (darker bars indicate higher repeat density). Areas with hig
smoother line [67] was fit across 1kb methylation averages
methylation was reduced compared to gene body CG
methylation (Table 1).
The methylation levels in all contexts (CG, CHG, CHH)

and genic positions (up-stream, down-stream, and gene
body) at a given gene were significantly correlated with
one another (Fig. 4). These were positive correlations for
lation across the 14 Mimulus guttatus linkage groups (putative
HH (blue). Centromeric repeat densities, adapted from [45], are shown
her repeat density tend to also have higher DNA methylation. A
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Fig. 3 Variation in methylation and expression across chromosomes. A
heatmap showing variation in gene expression and methylation across
the 14 Mimulus guttatus putative chromosomes. The 14 chromosomes
clustered into two large groups, those with generally high methylation
and low gene expression (top cluster, red dendogram), and those
exhibiting the opposite pattern (bottom cluster, green dendogram). On
the heat map, red indicates high values and blue indicates low values
of methylation or gene expression

Table 1 Mimulus guttatus methylation across sequence
contexts and genomic regions

Proportion of cytosines methylated

CG CHG CHH

Transposable Elements 0.73 0.36 0.063

Gene Body 0.56 0.038 0.012

1st 500bp of Gene Body 0.28 0.032 0.019

Up-stream Regulatory 0.35 0.11 0.027

Inter-Genic Regions 0.75 0.45 0.072

Total 0.72 0.365 0.061
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all cases but two. The two exceptions were negative corre-
lations between up- and down-stream CHH methylation
with gene body CG methylation. The most significant
positive correlations were found between CHG and CHH
or CG methylation levels at both up-stream and down-
stream regions, as well as between CHG and CHH gene
body methylation. Interestingly, the methylation levels for
all three contexts vary greatly across the three gene re-
gions in a fairly unpredictable manner. For instance, cor-
relation between up-stream CG methylation and gene
body CG methylation is only r = 0.14. This highlights the
disparate functions of regulatory region methylation with
that of gene body methylation [54]. The extremely high
correlations between CHG and CHH methylation (Fig. 4,
r > 0.67) in all three regions is likely due to the involve-
ment of similar enzymatic machinery in the propagation
of both types of non-CG methylation [55].

Methylation effect on gene expression
A stepwise cubic polynomial model was selected to pre-
dict log(gene expression) based on minimum BIC. Out
of a possible 454 parameters, the minimum BIC criter-
ion selected a model with 29 factors that explained (R2)
20.1 % of the variation in log transformed expression
values (SS Model: 1764, SS Error: 6981, F28,17042 = 153.6,
p < 0.0001, Tables 2, 3 and 4, Fig. 5, Additional file 1:
Figure S1). Including all 454 parameters increases R2

only marginally (to 23.3 %), and the minimum calculated
R2 calculated in 3-fold cross-validation was 17.9 %. Gen-
erally, there is an excess of genes predicted to be
expressed at log-transformed values between 1.5 and 2.5,
that were actually expressed at levels less than 1.2, as
well as genes expressed above 4, which this model never
predicts (Additional file 1: Figure S1). It is clear that
while gene methylation can modify gene expression, it
cannot predict the complete repression, or extremely
high expression of some genes. As all parameters were
Z-transformed prior to modeling, the effect estimates
are comparable across variables (Table 4). In order to
maintain both statistical and molecular consistency
throughout, both Z-transformed values and raw values
are reported. The inclusion of both various forms of
DNA methylation and gene architecture (number of
exons, exon length, intron length) have not been in-
cluded in a single model explicitly testing their ability to
predict gene expression, but their independent effects
have often been looked at in relation to gene expression.
While it is hard to compare our integrative analysis on
gene expression with prior studies, we generally find the
same direction of effect in our data as was found in
other plant systems [3]. Trends are thus not Mimulus
specific, but likely more general effects of DNA methyla-
tion on gene expression in angiosperms. Finally, when
discussing the role of various forms of methylation on
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gene expression we often designate a specific type of
methylation as having a positive or negative effect on
gene expression. In this context that indicates that there
was significant predictive ability for a given type of
methylation on gene expression. However, due to the na-
ture of this experimental design we cannot definitively
define the arrow of causation.

Gene body CG methylation
Linear Effects: log(GE) = 2.61 − 0.07mcg = f 1, where mcg is
gene body CG methylation and GE is gene expression.
Controlling for gene architecture and other forms of
methylation, we observe a negative linear effect of gene
body CG methylation on gene expression (Figs. 5 and 6a.
black line). The effect size of gene body CG methylation
Table 2 Summary of REML genetic architecture and
methylation fit on log transformed gene expression

R-Square 0.201775

R-Square Adj. 0.200462

Root Mean Square Error 0.640578

Mean of Response 2.483507
(mcg) is −0.07 (Table 3); a gene with mcg = − 1 (32 %) is pre-
dicted to have 35 % higher expression than one with mcg =
1 (80 %) (Fig. 6a, black line). Previous studies report that
gene body CG methylation is positively correlated with
gene expression [3, 10, 19, 20]. While the linear component
of the model seems to contradict these previous reports, it
cannot be interpreted in isolation. The polynomial and
interaction terms indicate that gene body methylation has
neither universally positive nor negative effects on gene ex-
pression. Traditional methods that looked for associations
between gene expression and gene body CG methylation
(which find a positive correlation between the two), and
modeling methods as applied here followed by only analysis
of the simple linear terms (which finds a negative correl-
ation) come up quite short in portraying the role of gene
Table 3 Analysis of variance in gene expression predictive
model

Source DF Sum of Squares Mean Square F Ratio

Model 28 1764.7903 63.0282 153.6

Error 17014 6981.5210 0.4070 Prob > F

C. Total 17042 8746.3113 p < 0.0001



Table 4 Sorted estimate of parameter effects on log transformed gene expression

Positive Terms Estimate Std Error t Ratio Prob > |t|

Intron Length 0.3472 0.0117 29.75 <.0001

Gene Body CHG2 0.0874 0.0082 10.64 <.0001

Number of Exons*Intron Length 0.0793 0.0081 9.74 <.0001

Exon Length 0.0767 0.0102 7.55 <.0001

Exon Length* Intron Length 0.0553 0.0070 7.86 <.0001

Gene Body CG * Exon Length 0.0392 0.0089 4.4 <.0001

Gene Body CG2 * Exon Length 0.0303 0.0069 4.37 <.0001

Up-Stream CHH 0.0275 0.0055 4.99 <.0001

Gene Body CG*Gene Body CHH 0.0244 0.0064 3.78 0.0002

Down-stream CHH 0.0185 0.0050 3.69 0.0002

Up-stream CHH* Percent CG 0.0167 0.0051 3.28 0.0011

Intron Length3 0.0105 0.0007 14.4 <.0001

Exon Length2 * Number of Exons 0.0074 0.0009 8.19 <.0001

Negative Terms

Gene Body CHG −0.3273 0.0197 −16.58 <.0001

Intron Length2 −0.1611 0.0076 −21.18 <.0001

Gene Body CG2 −0.0980 0.0092 −10.62 <.0001

Gene Body CG −0.0720 0.0118 −6.09 <.0001

Exon Length * Number of Exons −0.0662 0.0076 −8.72 <.0001

Gene Body CHH −0.0451 0.0076 −5.93 <.0001

Number of Exons −0.0308 0.0112 −2.75 0.0059

Percent CG3 −0.0277 0.0059 −4.73 <.0001

Up-Stream CG −0.0274 0.0054 −5.06 <.0001

Exon Length2 −0.0205 0.0033 −6.28 <.0001

Gene Body CHG * Exon Length −0.0198 0.0058 −3.41 0.0007

Up-stream CG* Up-stream CHH −0.0188 0.0058 −3.23 0.0012

Up-stream CG* Gene Body CG −0.0170 0.0052 −3.28 0.001

Exon Length * Intron Length * Number of Exons −0.0118 0.0016 −7.21 <.0001

Gene Body CHG3 −0.0063 0.0008 −7.95 <.0001

*Superscripts represent the power to which a term is raised
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body CG methylation in transcriptional regulation. By con-
sidering non-linear effects of methylation on gene expres-
sion we can begin to increase our understanding of the role
of gene body CG methylation in gene regulation.
Quadratic Effects: f 1 − 0.1mcg

2 = f 2. The squared gene
body CG methylation term has the second largest effect
size of any methylation term (after gene body CHG
methylation) on gene expression, and leads to a pre-
dicted local mcg maximum for gene expression (due to it
being a negative parabola, Fig. 6a, green line). This max-
imum is found at mcg = − 0.35 (47 %). As gene methyla-
tion increases or decreases relative to a moderate 45 %
methylation, gene expression is expected to decrease
(Fig. 6a; green line).
Cubic Effects: f 2 − 0.03mcg

3 = f 3. The cubed gene body
CG methylation term is also negative; compared to our
quadratic model, this leads to higher predicted gene ex-
pression for genes with lower than average methylation,
and lower for genes with higher than average methyla-
tion. This slightly lowers the predicted local maximum
of gene expression to mcg = − 0.43 (45 %) (Fig. 6a, blue
line). These data agree with previous findings that there
is a non-linear relationship between gene body CG
methylation and gene expression with an intermediate
optimum [3].

Interaction terms
Negative Promoter CG Methylation Interaction: f 3−.02mcg

ucg= f 4. The effect of interaction terms in this model is best
understood by comparing expected gene expression across
mcg values for a variety of interaction term values. Changes
in linear interaction term values (in this case up-stream cg
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methylation ucg), lead to a change in our linear mcg coeffi-
cient. For example, at ucg= 1 (82 %), 0.2mcg is subtracted
from our earlier model, we are left with:

log GEð Þ ¼ 2:61−:07mcg−:10m2
cg−0:03m

3
cg−:02mcg

¼ f 3u¼1

f 3u¼1 ¼ 2:61−:09mcg−:10m2
cg−0:03m

3
cg

At ucg = 1 (82 %) we find that the local maximum for
gene expression is at mcg = − 0.62 (40.2 %), while at ucg = −
1 (24.1 %) the local maximum for gene expression is at
mcg = − 0.29 (48.8 %). As up-stream CG methylation de-
creases (Fig. 6b, from purple to yellow lines), gene body
CG methylation is expected to have a more positive effect
on gene expression.
While it has long been noted that regulatory region

methylation is linked with reduced gene expression, here
we find evidence that the difference in methylation be-
tween these regions also appears to correlate with gene
expression. The negative interaction term between up-
stream and gene body CG methylation predicts that dis-
tinctly different levels of methylation up-stream and
within genes tends to correspond with higher levels of
gene expression. When gene body CG methylation and
regulatory methylation are both high, gene expression
tends to be low (Fig. 6b, purple lines at high gene body
CG values). However, as either decreases (Fig. 6b, purple
lines at low gene body CG values, or yellow lines at high
CG methylation values), gene expression is expected to
increase.
Three positive interaction terms: f 4 +mcg(.02uchh+.02

mchh+.04lexon) = f 5: While only up-stream CG methylation
showed a negative interaction with gene body CG methyla-
tion, three terms have positive linear interactions: Up-
stream CHH methylation, gene body CHH methylation,
and exon length. These can be treated in much the same
way as our negative interaction term. Depending on the
values of these terms, they can offset each other and lead to
the removal of any interaction effect. For example if exon
length (lexon) =− 1 and up-stream (uchh) and gene body
(mchh) CHH methylation = 1 these positive interaction
terms cancel out (−.4 + .2 + .2 = 0). However, if we consider
them varying in the same direction, they can have a striking
effect on the relationship between gene body CG methyla-
tion and gene expression. At uchh =mchh = lexon = 1 (and the
negative interaction term ucg = 0), we see the local max-
imum is at a methylation level of mcg = − 0.05 (55.1 %). If
our negative interaction term ucg = − 1 , this increases to
mcg = + 0.05 (57.3 %) (Fig. 6b, varying the values of our
interaction terms, uchh =mchh = lexon = − ucg from −1.6 to
1.6, as the summed interaction term increases (lines be-
come yellow) the local maxima for gene expression does so
as well). When uchh =mchh = lexon = − ucg < 0, gene body CG
methylation is almost purely repressive. At a summed inter-
action value less than −0.7 there is no longer a local



Fig. 6 DNA methylation modeling to predict gene expression. A visual depiction of our simplified model showing the effect of gene body CG
methylation and an increasing complexity of interaction terms on gene expression. a A scatterplot comparing Z-transformed gene body CG methylation
values with log(gene expression) values. The black line shows the linear term, green line includes both the linear and quiadratic term, and the blue line
includes linear, quadratic, and cubic terms. b Interaction plot depicting the interaction between gene CG methylation and exonlength, up-stream CHH
methylation, gene body CHH methylation, and gene body CG methylation on gene expression. Summed terms across these four terms are considered
ranging from −1.6 (dark purple) to 1.6 (yellow). Points represent actual genes CG gene body methylation, gene expression, and their color represents their
interaction sum on the same scale as the model colors. c The second order interaction term of squared gene body CG methylation by exon length is
added to the model depicted in b. As exon length increases (goes from red to blue) gene body CG methylation is found to have a more positive effect
on gene expression. Points represent genes, and colors represent the exon length of these genes on the same scale as the model colors. d The
independent effect of exon length on gene expression is added to the model depicted in c. The shape of the lines does not change, however predicted
gene expression is altered (the lines move up or down on the y-axis) depending on the predicted effects of exon length on gene expression
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maximum, and CG methylation has a purely negative effect
on gene expression.
Quadratic Interaction Terms: log(GE) = f 5+.03mcg

2 l
exon = f 6. Finally the interaction between the quadratic
gene body CG methylation term and exon length is in-
cluded in this model. As our quadratic term increases,
not only does the position of the local gene expression
maximum increase, so to does the inflection point (the
point at which the function changes from concave to
convex). Now, at the same linear interaction values
tested above (uchh =mchh = lexon = − ucg = 1), our local
maximum occurs at mcg = 0.07 (57.8 %) (Fig. 6c). As
exon sizes increase, the effect of gene body CG methyla-
tion is expected to rapidly become more positive, and
peak gene expression is predicted to occur at higher mcg
levels. At lexon = 3 (3.5 kb), we find that the local max-
imum for gene expression occurs at mcg = 0.90 (78.1 %)
and at lexon = 4 (6kb) there is no longer a local maximum
for mcg, and the highest expected gene expression occurs
at mcg approaching 100 % (largest gene size in Fig. 6c). It
appears that for genes with smaller exons, moderately
methylated genes are most highly expressed, but as
genes become larger so to does the level of gene methy-
lation that is associated with more highly expressed
genes. Our gene size by gene body CG methylation re-
sults confirm a pattern observed by Zilberman et al. [3]
in the first genome-wide methylome analysis in Arabi-
dopsis in which found only a marginal relationship be-
tween gene size and gene expression, except for the
genes in which gene bodies were methylated and then
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they found a positive relationship between gene size and
gene expression.
Individual effects of interaction terms: log(GE) =

f 5 + .08lexon − .02lexon
2 = f 6: Finally, we consider the

effect of multiple terms simultaneously. Up until this
point we have only included gene body CG methylation
effects, and its interaction terms, while not including the
independent effects of the term with which it interacts.
Independent of gene body CG methylation, we find that
gene expression tends to increase as the standardized
exon length increases from −1 (500bp) to 2 (2kb), and
beyond this point we expect a decline. In the absence of
interaction terms, only considering independent effects
of gene body CG methylation and exon length, we would
estimate that peak gene expression occurs at an exon
length of 2kb, and methylation of 45 %. Here we show
that the effect of gene body CG methylation on expres-
sion is extremely size dependent, and that gene expres-
sion is expected to be highest for large highly gene body
CG methylated genes, but lowest for small highly gene
body CG methylated genes (Fig. 6d). It may be that as
exon length increases, gene methylation is necessary to
stabilize transcription, while for smaller genes it is not
necessary for this purpose, and rather plays a repressive
effect due to condensing chromatin near the transcrip-
tion start site.
In this same way all other independent and interaction

terms could be added to this model, parameters consid-
ered, and hypotheses tested. As nine distinct parameters
are included (with 27 total terms) in this model the results
quickly become difficult to conceptualize or visualize, yet
through full-model construction, followed by simplifica-
tion methods as presented above it is possible to decipher
complex higher order regulatory interactions. We briefly
discuss the effects of the other significant gene size and
methylation terms in this model.

Intron length
Intron length shows significant first, second, and third
order effects with a gene expression peak at an intron
size of approximately 1700 base pairs. Additionally, a
positive interaction term with both exon length and
number of introns suggests that generally, longer genes
with more introns tend to be more highly expressed. Al-
though relatively large genes do tend to be most highly
expressed, there are negative quadratic terms for both
exon and intron length that suggest after a certain point,
increasing exon and intron length should be associated
with decreased gene expression.

Non-CG gene body methylation
Gene body CHG methylation had significant linear,
quadratic, and cubic independent terms, and an exon
length interaction term. Gene body CHG methylation
has a negative effect on gene expression across nearly its
full range of possible values (Fig. 5), and it appears that
it is the increase from no CHG methylation to slight
CHG methylation that reduces gene expression. After
this point the effect of CHG methylation appears to be
minimal. The negative exon length interaction term sug-
gests that long genes with CHG methylation tend to be
more significantly repressed than smaller genes.
Gene body CHH methylation was found to have a

negative effect on gene expression (Fig. 5), but a positive
interaction with gene body CG methylation. Thus, as
gene body CHH methylation increases, gene body CG
methylation is expected to have a more positive effect
on gene expression, but mean gene expression, inde-
pendent of gene body CG methylation, is expected to
decrease. Like CHG methylation, a manual inspection
reveals that the jump from no CHH methylation to low
levels of CHH methylation leads to a decrease in gene
expression, but after this, the effects of increased methy-
lation are minimal.
While it has been suggested that non-CG gene body

methylation may be misattributed to genomic regions
that are actually pseudogenes or paralogs [52, 56], here
we find evidence that in at least some cases these genes
are still expressed, albeit at lower levels than non-
methylated genes. One possible explanation is that non-
CG methylation of genes may be a first step on the path
toward pseudogenization [57], whereby genes become
targeted by non-CG methylation, gene expression is re-
duced, mutational constraints become lightened, and
eventually the gene becomes entirely non-functional.
Additionally, it may be that tightly developmentally con-
trolled small RNAs are responsible for the majority of
this methylation, and the use of identical tissue for
methylation and gene expression analysis would identify
a stronger role of gene body non-CG methylation on
gene expression. Finally, even trace amounts of non-CG
gene body methylation may be indicative of the presence
of small RNAs, and RNA-directed DNA methylation
(RdDM) [58]. It could be that the methylation of just a
few nucleotides by a single 24nt siRNA is enough to re-
duce gene expression, without significantly altering the
methylation state of the whole gene.

Regulatory region methylation
Along with a negative interaction with gene body CG
methylation, up-stream CG methylation also has a direct
negative effect on gene expression (Fig. 5) and a negative
interaction with up-stream CHH methylation. Not only
does up-stream CG methylation limit the positive effect of
gene body CG methylation on predicted gene expression,
it also directly reduces predicted expression. Up-stream
CHH methylation has both a significant positive linear ef-
fect on gene expression (Fig. 5), and a positive interaction
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with gene body CG methylation. The negative interaction
term with up-stream CG methylation suggests that while
up-stream CHH methylation generally has a positive effect
on gene expression, when it is found alongside CG methy-
lation, this effect is negated. While down-stream CHH
methylation did not interact with gene body CG methyla-
tion, it was also found to have a positive effect on gene ex-
pression (Fig. 5).
A previous study in Arabidopsis similarly found that

there was a positive correlation between gene expres-
sion and regulatory CHH methylation (albeit not in a
regression framework) [26]. They posit that as gene ex-
pression increases, unstable transcripts are produced as
by-products at both the 5′ and 3′ ends of genes. In turn,
this lead to the production of small RNAs that can
target and cause CHH methylation bracketing highly
expressed genes through RNA directed DNA methyla-
tion (RdDM). The possibility that increased gene ex-
pression causes increased regulatory CHH methylation,
and not vice-versa does not introduce bias in this
framework, but rather reinforces that our interpreta-
tions do not imply causality.

Gene expression modeling overview
While the traditional method of looking for simple asso-
ciations between methylation state and gene expression
has provided some insight into epigenetic regulation,
here we demonstrate that modeling approaches can pro-
vide additional insight into these systems. We explain a
surprisingly high (20.1 %) amount of the variation in
log(gene expression) simply through methylation and
gene architecture variation. We considered a potential
454 parameters in our model before settling on 29, but
it is important to note that many other factors such as
presence of enhancers within the gene body and distance
to transposable elements, likely also modify the role of
methylation on expression. By considering exon and in-
tron length within this model we take the first steps
to account for these potential confounding factors of
methylation on expression. It is worth stressing that the
gene expression and methylome data were not only col-
lected from different individuals, but also different gen-
etic lines, using different vegetative tissue types, and
grown under slightly different greenhouse conditions. It
is certainly possible that a similar model, tuned across
multiple paired methylome and gene expression sam-
ples, could predict gene expression with greater preci-
sion. This portion of gene expression variation explained
represents that which is at least relatively stable across
individual genotypes, tissue, and conditions. While here
we apply this model to gene expression on a gene-by-
gene basis, through altering the response variable to an-
other parameter of a gene, such as it’s mutation rate,
gene expression variance, or the tissues in which it is
expressed, this model could be extended to look for
other roles of DNA methylation on gene function and
evolution.
Results from this and other [3, 20, 29, 59] studies sug-

gest that gene body CG methylation needs to be consid-
ered to have a quadratic effect on gene expression, and
that this effect is highly dependent on exon size. Thus,
genes can either be parsed according to exon length
prior to estimating the role of gene body CG methyla-
tion on expression, or the interaction between exon
length and methylation should be considered in the
model. Other forms of methylation appear to have a
more straightforward role in regulating gene expression,
and in some cases it may suffice to predict that, for ex-
ample, as up-stream CG methylation increases at a gene,
its expression will likely decrease.

Gene ontology analysis of genes with high CG gene body
methylation
Comparing genes in the top 10 % genome wide for gene
body CG methylation with the remainder of the genome,
we found numerous gene categories that are either
enriched or depleted in our set of highly CG methylated
genes. Genes coding for proteins with kinase activity, in-
volved in signal transduction, and nucleotide binding
were among those which tended to be highly methyl-
ated, while proteins functioning in the thylakoid, plastid,
and ribosome, as well as proteins involved in primary
metabolism, photosynthesis, and RNA binding tended to
be lowly or moderately methylated (Fig. 7). Similar re-
sults have been found in Brachypodium, rice [29], and
Arabidopsis [3].

Decreased methylation near transcription start sites
We looked for changes in methylation near gene tran-
scription start sites. We found that CG, CHG, and CHH
methylation all were significantly depleted at and around
gene start sites (Fig. 8). This depletion, along with the
negative interaction term between up-stream and gene
body CG methylation on gene expression, points to-
wards a role of methylation in epigenetically labeling
coding genetic regions. Additionally, recent evidence has
shown that in M. guttatus genetic recombination occurs
at higher frequency near gene start sites. In other sys-
tems it has been shown that DNA methylation is nega-
tively correlated with recombination [7], and it may be
that decreased methylation at gene start sites is related
to the increase in recombination.
Decreased methylation near transcription start sites

(TSS) was one of the earliest discovered phenomena of
gene methylation [3]. However, new evidence in M. gut-
tatus [40] provides us with a novel framework in which
to view this pattern. Hellsten et al. [40] identified an ap-
proximately two-fold increase in recombination near
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gene start sites (the beginning of exon 1 being most
enriched), and postulated that this may be related to nu-
cleosome depleted open chromatin at these regions as is
the case in Arabidopsis [60] and rice [61]. At the time of
their publication however, there was no evidence for a
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Fig. 8 DNA methylation around transcriptional start sites. Around gene sta
we observe a significant drop in DNA methylation. For CG (p-value = 6.45 ×
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(p = 4.04 × 10−11) methylation then significantly increases over the next 500
similar trend in Mimulus. Here, evidence of depleted
methylation near TSS (Table 1; Fig. 8) provides support
to the theory that open chromatin (unmethylated) near
TSS may increase local recombination rates. It appears
that at least in yeast double stranded breaks occur most
500 1000
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Table 5 Transposable element frequencies, classes, and
methylation

Percent Methylation

ID Copies CG CHG CHH Family Class

helB8c 2380 0.809 0.473 0.052 Helitron 2

MULE_MITE1c 674 0.627 0.263 0.102 MITE 2

Copia1b 424 0.780 0.437 0.058 Copia 1

helD8b 402 0.712 0.357 0.055 Helitron 2

MULE_MITE2b 245 0.633 0.285 0.077 MULE 2

pogo_MITE2b 203 0.738 0.281 0.071 MITE 2

MULE_MITE16b 200 0.713 0.207 0.070 MULE 2

hAT_MITE1 197 0.782 0.294 0.051 MITE 2

MULE_na62 165 0.768 0.359 0.064 MULE 2

MULE_MITE1a 158 0.720 0.250 0.071 MULE 2

LARD4 155 0.793 0.442 0.081 LARD 1

hAT_na66a 151 0.869 0.276 0.042 hAT 2

Tourist6c 151 0.634 0.259 0.071 MITE 2

MuDR8 150 0.791 0.492 0.089 MuDR 2

MULE_na13a 145 0.752 0.400 0.068 MULE 2

Copia1a 143 0.717 0.374 0.045 Copia 1

Copia2 137 0.685 0.494 0.085 Copia 1

SINE1a 134 0.685 0.293 0.112 SINE 1

Gypsy8 128 0.605 0.228 0.033 Gypsy 1

MULE_na13b 128 0.449 0.260 0.058 MULE 2

helF3c 119 0.737 0.362 0.067 Helitron 2

Jittery7 116 0.639 0.260 0.053 Mu 2

Toursit4c 115 0.781 0.315 0.085 MITE 2

Gypsy4 111 0.818 0.402 0.051 Gypsy 1

MULE_MITE25b 109 0.626 0.151 0.042 MULE 2
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frequently in open chromatin regions [62], which may
explain the observed increase in recombination near
transcription start sites. It is likely that the increased re-
combination near TSS is simply a by-product of the dual
forces exerted by DNA methylation, one involved in
gene regulation, and another limiting double stranded
breaks. The ability for DNA methylation to alter both of
these processes provides an interesting link between
gene regulation and DNA recombination that may or
may not prove to be of evolutionary significance. Further
studies linking methylation and recombination at a nu-
cleotide level should further clarify this trend.

Transposable element methylation
We identified 1,411 transposable elements across the gen-
ome ranging in copy number from 1 to 2,380 (median
copy number = 7). Percent methylation was calculated in
each of three sequence contexts. In total, 34 % of the M.
guttatus genome was estimated to be of transposable
element sequence, and methylation levels within transpos-
able elements were significantly higher than that of genes,
and at similar levels to inter-genic regions (Table 1). We
did not find there to be a significant copy number effect
on TE methylation. Of the top 25 most common transpos-
able elements in the Mimulus genome, six were type 1,
and 19 were type 2 transposons (Table 5).
We find that DNA methylation in all contexts is

enriched in transposable elements relative to genes,
however this is most significant for non-CG methylation
(Table 1). This suggests that both RNA dependent DNA
methylation (RdDM) is targeting and silencing transpos-
able elements in M. guttatus as is this case in other an-
giosperms. Found at 2,380 copies, the helB8c family of
helitron elements is far and away the most common
transposon in the Mimulus genome (more abundant
than the next seven TE families combined; Table 5).
Helitrons are a relatively newly discovered class of type
2 transposable elements that propagate through a rolling
circle mechanism that is still somewhat mysterious
[63]. One thing that is clear, is that these elements have
been highly successful in propagating across flowering
plants, making up 2 % of the Arabidopsis genome [64];
a single family of helitrons makes up 6 % of the maize
genome [63], making it the most abundant DNA trans-
poson identified. Here, we provide evidence for the suc-
cess of these elements across the diversity of flowering
plants.

Conclusions
Much remains unknown about the gene regulatory in-
formation contained in an organism’s methylome, but
here we provide further evidence of complex interac-
tions between gene methylation and expression. DNA
methylation may actively alter gene expression, itself be
altered by gene expression, or both methylation and ex-
pression may be jointly determined by a distinct genetic
feature. Still the ability to explain over a fifth of the vari-
ation in log transformed gene expression by local DNA
methylation, and basic genetic architecture (exon length,
intron length, exon number), is promising and has numer-
ous potential applications. Recent efforts have shown that
the plant methylome is relatively stable throughout devel-
opment [65], unlike gene expression. In this way methyla-
tion at a gene likely reflects moderately stable epigenetic
control of gene expression, while developmentally acti-
vated transcription factors and small RNAs may provide
highly plastic gene expression control throughout de-
velopment. Through combining differential methylation
analyses across tissue types, environmental treatments,
or genetic lines with a modeling approach as described
here; our understanding of the role of epigenetic vari-
ation in gene regulation can be greatly increased.
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Additional file

Additional file 1: Figure S1. Predicted log (gene expression) from
cubic polynominal REML model compared to actual log (gene
expression). Slope =1.02, R2 = 0.201, df = 28.
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JC carried out PBAT library preparation, preformed gene expression modeling,
and drafted the manuscript. JK designed code necessary to calculate methylation
percentages across genomic regions, coordinated plant grow ups and DNA
extraction, and perceived the link between methylation and crossing over at
transcription start sites. FM aided in the construction of libraries, and preformed
BMap read mapping to the reference genome. TI participated in the coordination
of the experiment, aided in the construction of libraries, and provided general
support. LH conceived of the study, participated in its design and coordination,
and helped draft the manuscript. All authors read and approved the final
manuscript.

Acknowledgments
Nicholas McCool for plant care and DNA extractions. Masahiko Shimizu for
laboratory aid, travel assistance, and general support. The University of Kansas
Genome Sequencing Facility for preforming sequencing operations. This work
was supported by NSF IOS-0951254 to JKK, LCH and AG Scoville. JMC’s travel to
the University of Tokyo was supported by an NSF RCN microMorph grant, and a
University of Kansas Botany Endowment grant to JMC.

Author details
1Department of Ecology and Evolutionary Biology, University of Kansas,
Lawrence, KS 66045, USA. 2Department of Medical Biochemistry, Department
of Biochemistry, Fukuoka 812-8581, Fukuoka 812-8582, Japan.

Received: 29 January 2015 Accepted: 29 May 2015

References
1. Flavell R. Inactivation of gene expression in plants as a consequence of

specific sequence duplication. Proc Natl Acad Sci. 1994;91(9):3490–6.
2. Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and

gene expression. Curr Opin Genet Dev. 1993;3(2):226–31.
3. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis

of Arabidopsis thaliana DNA methylation uncovers an interdependence
between methylation and transcription. Nat Genet. 2006;39(1):61–9.

4. Lippman Z, Gendrel A-V, Black M, Vaughn MW, Dedhia N, McCombie WR,
et al. Role of transposable elements in heterochromatin and epigenetic
control. Nature. 2004;430(6998):471–6.

5. Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T.
Mobilization of transposons by a mutation abolishing full DNA methylation
in Arabidopsis. Nature. 2001;411(6834):212–4.

6. Xia J, Han L, Zhao Z. Investigating the relationship of DNA methylation with
mutation rate and allele frequency in the human genome. BMC Genomics.
2012;13(8):1–9.

7. Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J, Reinders J,
et al. Loss of DNA methylation affects the recombination landscape in
Arabidopsis. Proc Natl Acad Sci. 2012;109(15):5880–5.

8. Feng S, Cokus SJ, Zhang X, Chen P-Y, Bostick M, Goll MG, et al. Conservation
and divergence of methylation patterning in plants and animals. Proc Natl
Acad Sci. 2010;107(19):8689–94.

9. Huff JT, Zilberman D. Dnmt1-independent CG methylation contributes to
nucleosome positioning in diverse eukaryotes. Cell. 2014;156(6):1286–97.

10. Gruenbaum Y, Naveh-Many T, Cedar H, Razin A. Sequence specificity of
methylation in higher plant DNA. 1981.

11. Bond DM, Baulcombe DC. Small RNAs and heritable epigenetic variation in
plants. Trends Cell Biol. 2014;24(2):100–7.

12. Kinoshita T, Jacobsen SE. Opening the door to epigenetics in PCP. Plant Cell
Physiol. 2012;53(5):763–5.
13. Eichten SR, Schmitz RJ, Springer NM. Epigenetics: beyond chromatin
modifications and complex genetic regulation. Plant Physiol.
2014;165(3):933–47.

14. Cao X, Jacobsen SE. Locus-specific control of asymmetric and CpNpG methylation
by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci. 2002;99
suppl 4:16491–8.

15. Law JA, Du J, Hale CJ, Feng S, Krajewski K, Palanca AMS, et al. Polymerase IV
occupancy at RNA-directed DNA methylation sites requires SHH1. Nature.
2013;498(7454):385–9.

16. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA
methylation patterns in plants and animals. Nat Rev Genet. 2010;11(3):204–20.

17. Leonhardt H, Page AW, Weier H-U, Bestor TH. A targeting sequence directs
DNA methyltransferase to sites of DNA replication in mammalian nuclei.
Cell. 1992;71(5):865–73.

18. Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S,
et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG
methylation. Science. 2001;292(5524):2077–80.

19. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, et al. Genome-
wide high-resolution mapping and functional analysis of DNA methylation
in arabidopsis. Cell. 2006;126(6):1189–201.

20. Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H, et al. Single-base resolution maps of
cultivated and wild rice methylomes and regulatory roles of DNA
methylation in plant gene expression. BMC Genomics. 2012;13(1):300.

21. Coleman-Derr D, Zilberman D. Deposition of histone variant H2A. Z within
gene bodies regulates responsive genes. PLoS Genet. 2012;8(10):e1002988.

22. Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J, et al. Single-base
resolution methylomes of tomato fruit development reveal epigenome
modifications associated with ripening. Nat Biotechnol. 2013;31(2):154–9.

23. Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R, Hermanson PJ, et al.
Epigenetic and genetic influences on DNA methylation variation in maize
populations. Plant Cell. 2013;25(8):2783–97.

24. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, et al.
Patterns of population epigenomic diversity. Nature. 2013;495(7440):193–8.

25. Saze H, Tsugane K, Kanno T, Nishimura T. DNA methylation in plants:
relationship to small RNAs and histone modifications, and functions in
transposon inactivation. Plant Cell Physiol. 2012;53(5):766–84.

26. Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, et al. CHH islands: de
novo DNA methylation in near-gene chromatin regulation in maize.
Genome Res. 2013;23(4):628–37.

27. Takuno S, Gaut BS. Gene body methylation is conserved between plant
orthologs and is of evolutionary consequence. Proc Natl Acad Sci.
2013;110(5):1797–802.

28. Li Q, Eichten SR, Hermanson PJ, Springer NM. Inheritance patterns and
stability of DNA methylation variation in maize near-isogenic lines. Genetics.
2014;196(3):667–76.

29. Wang J, Marowsky NC, Fan C. Divergence of gene body DNA methylation
and evolution of plant duplicate genes. PLoS One. 2014;9(10):e110357.

30. Yuan Y, Guo L, Shen L, Liu JS. Predicting gene expression from sequence: a
reexamination. PLoS Comput Biol. 2007;3(11):e243.

31. Li X, Wang X, He K, Ma Y, Su N, He H, et al. High-resolution mapping of
epigenetic modifications of the rice genome uncovers interplay between
DNA methylation, histone methylation, and gene expression. Plant Cell
Online. 2008;20(2):259–76.

32. Colicchio JM, Monnahan PJ, Kelly JK, Hileman LC. Gene expression plasticity
resulting from parental leaf damage in Mimulus guttatus. New Phytol.
2015;205(2):894–906.

33. Holeski L. Within and between generation phenotypic plasticity in trichome
density of Mimulus guttatus. J Evol Biol. 2007;20(6):2092–100.

34. Holeski LM, Chase‐Alone R, Kelly JK. The genetics of phenotypic plasticity in
plant defense: trichome production in Mimulus guttatus. Am Nat.
2010;175(4):391–400.

35. Scoville AG, Barnett LL, Bodbyl‐Roels S, Kelly JK, Hileman LC. Differential
regulation of a MYB transcription factor is correlated with transgenerational
epigenetic inheritance of trichome density in Mimulus guttatus. New
Phytolo. 2011;191(1):251–63.

36. Holeski LM, Jander G, Agrawal AA. Transgenerational defense induction and
epigenetic inheritance in plants. Trends Ecol Evol. 2012;27(11):618–26.

37. Holeski LM, Zinkgraf MS, Couture JJ, Whitham TG, Lindroth RL.
Transgenerational effects of herbivory in a group of long-lived tree species:
maternal damage reduces offspring allocation to resistance traits, but not
growth. J Ecol. 2013;101(4):1062–73.

http://www.biomedcentral.com/content/supplementary/s12864-015-1668-0-s1.eps


Colicchio et al. BMC Genomics  (2015) 16:507 Page 15 of 15
38. Latzel V, Allan E, Bortolini Silveira A, Colot V, Fischer M, Bossdorf O.
Epigenetic diversity increases the productivity and stability of plant
populations. Nat Commun. 2013;4:2875.

39. Kilvitis H, Alvarez M, Foust C, Schrey A, Robertson M, Richards C. Ecological
Epigenetics. In: Landry CR, Aubin-Horth N, editors. Ecological Genomics, vol.
781. Netherlands: Springer; 2014. p. 191–210.

40. Hellsten U, Wright KM, Jenkins J, Shu S, Yuan Y, Wessler SR, et al. Fine-scale
variation in meiotic recombination in Mimulus inferred from population
shotgun sequencing. Proc Natl Acad Sci. 2013;110(48):19478–82.

41. Holeski L, Keefover-Ring K, Bowers MD, Harnenz Z, Lindroth R. Patterns of
Phytochemical Variation in Mimulus guttatus (Yellow Monkeyflower).
J Chem Ecol. 2013;39(4):525–36.

42. Hardcastle T. High-throughput sequencing of cytosine methylation in plant
DNA. Plant Methods. 2013;9(1):16.

43. Miura F, Enomoto Y, Dairiki R, Ito T. Amplification-free whole-genome
bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res.
2012;40(17):e136.

44. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame
genomic sequence comparison. Genome Res. 2011;21(3):487–93.

45. Flagel LE, Willis JH, Vision TJ. The standing pool of genomic structural
variation in a natural population of Mimulus guttatus. Genome Biol Evol.
2014;6(1):53–64.

46. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al.
Phytozome: a comparative platform for green plant genomics. Nucleic
Acids Res. 2012;40(D1):D1178–86.

47. Ren X-Y, Vorst O, Fiers MW, Stiekema WJ, Nap J-P. In plants, highly
expressed genes are the least compact. Trends Genet. 2006;22(10):528–32.

48. Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA.
Selection for short introns in highly expressed genes. Nat Genet.
2002;31(4):415–8.

49. Posada D, Buckley TR. Model selection and model averaging in
phylogenetics: advantages of Akaike information criterion and Bayesian
approaches over likelihood ratio tests. Syst Biol. 2004;53(5):793–808.

50. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation
and model selection. IJCAI. 1995;1995:1137–45.

51. Kelly JK, Koseva B, Mojica JP. The genomic signal of partial sweeps in
Mimulus guttatus. Genome Biol Evol. 2013;5(8):1457–69.

52. Schmitz RJ, He Y, Valdes-Lopez O, Khan SM, Joshi T, Urich MA, et al.
Epigenome-wide inheritance of cytosine methylation variants in a
recombinant inbred population. Genome Res. 2013;23(10):1663–74.

53. Shen H, He H, Li J, Chen W, Wang X, Guo L, et al. Genome-wide analysis of
DNA methylation and gene expression changes in two Arabidopsis
ecotypes and their reciprocal hybrids. Plant Cell. 2012;24(3):875–92.

54. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies
and beyond. Nat Rev Genet. 2012;13(7):484–92.

55. Bartee L, Malagnac F, Bender J. Arabidopsis cmt3 chromomethylase
mutations block non-CG methylation and silencing of an endogenous gene.
Genes Dev. 2001;15(14):1753–8.

56. Seymour DK, Koenig D, Hagmann J, Becker C, Weigel D. Evolution of DNA
methylation patterns in the brassicaceae is driven by differences in genome
organization. PLoS Genet. 2014;10(11):e1004785.

57. Li X, Li W, Wang H, Cao J, Maehashi K, Huang L, et al. Pseudogenization of a
sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS
Genet. 2005;1(1):e3.

58. Wassenegger M. RNA-directed DNA methylation. In: Plant Gene Silencing.
Springer; 2000: 83–100.

59. Yang H, Chang F, You C, Cui J, Zhu G, Wang L, et al. Whole‐genome DNA
methylation patterns and complex associations with gene structure and
expression during flower development in Arabidopsis. Plant J.
2015;81(2):268–81.

60. Zhang W, Zhang T, Wu Y, Jiang J. Genome-wide identification of regulatory
DNA elements and protein-binding footprints using signatures of open
chromatin in Arabidopsis. Plant Cell Online. 2012;24(7):2719–31.

61. Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, et al. A draft sequence of the rice
genome (Oryza sativa L. ssp. indica). Science. 2002;296(5565):79–92.

62. Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau Hannah G, Tischfield
Sam E, Zhu X, et al. A Hierarchical Combination of Factors Shapes the
Genome-wide Topography of Yeast Meiotic Recombination Initiation. Cell,
2011;144(5):719–731.
63. Xiong W, He L, Lai J, Dooner HK, Du C. HelitronScanner uncovers a large
overlooked cache of Helitron transposons in many plant genomes.
Proc Natl Acad Sci. 2014;111(28):10263–8.

64. Hollister JD, Gaut BS. Population and evolutionary dynamics of helitron
transposable elements in Arabidopsis thaliana. Mol Biol Evol.
2007;24(11):2515–24.

65. Eichten SR, Vaughn MW, Hermanson PJ, Springer NM. Variation in DNA
methylation patterns is more common among maize inbreds than among
tissues. Plant Genome 2013, 6(2).

66. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al.
Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA
methylation patterning. Nature. 2008;452(7184):215–9.

67. Wickham H. ggplot2: elegant graphics for data analysis: Springer; 2009.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	DNA extraction and bisulfite sequencing
	Read mapping
	Global methylome analysis
	Gene methylation analysis

	Results and discussion
	Global methylation
	Gene methylation
	Methylation effect on gene expression
	Gene body CG methylation
	Interaction terms
	Intron length
	Non-CG gene body methylation
	Regulatory region methylation
	Gene expression modeling overview

	Gene ontology analysis of genes with high CG gene body methylation
	Decreased methylation near transcription start sites
	Transposable element methylation

	Conclusions
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References



