138 research outputs found
Hybrid organic-inorganic polariton laser
Organic materials exhibit exceptional room temperature light emitting characteristics and enormous exciton oscillator strength, however, their low charge carrier mobility prevent their use in high-performance applications such as electrically pumped lasers. In this context, ultralow threshold polariton lasers, whose operation relies on Bose-Einstein condensation of polaritons - part-light part-matter quasiparticles, are highly advantageous since the requirement for high carrier injection no longer holds. Polariton lasers have been successfully implemented using inorganic materials owing to their excellent electrical properties, however, in most cases their relatively small exciton binding energies limit their operation temperature. It has been suggested that combining organic and inorganic semiconductors in a hybrid microcavity, exploiting resonant interactions between these materials would permit to dramatically enhance optical nonlinearities and operation temperature. Here, we obtain cavity mediated hybridization of GaAs and J-aggregate excitons in the strong coupling regime under electrical injection of carriers as well as polariton lasing up to 200 K under non-resonant optical pumping. Our demonstration paves the way towards realization of hybrid organic-inorganic microcavities which utilise the organic component for sustaining high temperature polariton condensation and efficient electrical injection through inorganic structure
Three-dimensional random Voronoi tessellations: From cubic crystal lattices to Poisson point processes
We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces
Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind
Using linear Vlasov theory of plasma waves and quasi-linear theory of
resonant wave-particle interaction, the dispersion relations and the
electromagnetic field fluctuations of fast and Alfven waves are studied for a
low-beta multi-ion plasma in the inner corona. Their probable roles in heating
and accelerating the solar wind via Landau and cyclotron resonances are
quantified. We assume that (1) low-frequency Alfven and fast waves have the
same spectral shape and the same amplitude of power spectral density; (2) these
waves eventually reach ion cyclotron frequencies due to a turbulence cascade;
(3) kinetic wave-particle interaction powers the solar wind. The existence of
alpha particles in a dominant proton/electron plasma can trigger linear mode
conversion between oblique fast-whistler and hybrid alpha-proton cyclotron
waves. The fast-cyclotron waves undergo both alpha and proton cyclotron
resonances. The alpha cyclotron resonance in fast-cyclotron waves is much
stronger than that in Alfven-cyclotron waves. For alpha cyclotron resonance, an
oblique fast-cyclotron wave has a larger left-handed electric field
fluctuation, a smaller wave number, a larger local wave amplitude, and a
greater energization capability than a corresponding Alfven-cyclotron wave at
the same wave propagation angle \theta, particularly at < \theta <
. When Alfven-cyclotron or fast-cyclotron waves are present, alpha
particles are the chief energy recipient. The transition of preferential
energization from alpha particles to protons may be self-modulated by
differential speed and temperature anisotropy of alpha particles via the
self-consistently evolving wave-particle interaction. Therefore, fast-cyclotron
waves as a result of linear mode coupling is a potentially important mechanism
for preferential energization of minor ions in the main acceleration region of
the solar wind.Comment: 29 pages, 10 figures, 3 tables. Accepted for publication in Solar
Physic
Rotation measure variations for 20 millisecond pulsars
We report on variations in the mean position angle of the 20 millisecond
pulsars being observed as part of the Parkes Pulsar Timing Array (PPTA)
project. It is found that the observed variations are dominated by changes in
the Faraday rotation occurring in the Earth's ionosphere. Two ionospheric
models are used to correct for the ionospheric contribution and it is found
that one based on the International Reference Ionosphere gave the best results.
Little or no significant long-term variation in interstellar RM was found with
limits typically about 0.1 rad m yr in absolute value. In a few
cases, apparently significant RM variations over timescales of a few 100 days
or more were seen. These are unlikely to be due to localised magnetised regions
crossing the line of sight since the implied magnetic fields are too high. Most
probably they are statistical fluctuations due to random spatial and temporal
variations in the interstellar electron density and magnetic field along the
line of sight.Comment: Accepted for publication in Astrophysics & Space Scienc
Heliolatitude and time variations of solar wind structure from in situ measurements and interplanetary scintillation observations
The 3D structure of solar wind and its evolution in time is needed for
heliospheric modeling and interpretation of energetic neutral atoms
observations. We present a model to retrieve the solar wind structure in
heliolatitude and time using all available and complementary data sources. We
determine the heliolatitude structure of solar wind speed on a yearly time grid
over the past 1.5 solar cycles based on remote-sensing observations of
interplanetary scintillations, in situ out-of-ecliptic measurements from
Ulysses, and in situ in-ecliptic measurements from the OMNI-2 database. Since
the in situ information on the solar wind density structure out of ecliptic is
not available apart from the Ulysses data, we derive correlation formulae
between solar wind speed and density and use the information on the solar wind
speed from interplanetary scintillation observations to retrieve the 3D
structure of solar wind density. With the variations of solar wind density and
speed in time and heliolatitude available we calculate variations in solar wind
flux, dynamic pressure and charge exchange rate in the approximation of
stationary H atoms.Comment: Accepted for publication in Solar Physic
Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS
On very large scales, density fluctuations in the Universe are small,
suggesting a perturbative model for large-scale clustering of galaxies (or
other dark matter tracers), in which the galaxy density is written as a Taylor
series in the local mass density, delta, with the unknown coefficients in the
series treated as free "bias" parameters. We extend this model to include
dependence of the galaxy density on the local values of nabla_i nabla_j phi and
nabla_i v_j, where phi is the potential and v is the peculiar velocity. We show
that only two new free parameters are needed to model the power spectrum and
bispectrum up to 4th order in the initial density perturbations, once symmetry
considerations and equivalences between possible terms are accounted for. One
of the new parameters is a bias multiplying s_ij s_ji, where s_ij=[nabla_i
nabla_j \nabla^-2 - 1/3 delta^K_ij] delta. The other multiplies s_ij t_ji,
where t_ij=[nabla_i nabla_j nabla^-2 - 1/3 delta^K_ij](theta-delta), with
theta=-(a H dlnD/dlna)^-1 nabla_i v_i. (There are other, observationally
equivalent, ways to write the two terms, e.g., using theta-delta instead of
s_ij s_ji.) We show how short-range (non-gravitational) non-locality can be
included through a controlled series of higher derivative terms, starting with
R^2 nabla^2 delta, where R is the scale of non-locality (this term will be a
small correction as long as k^2 R^2 is small, where k is the observed
wavenumber). We suggest that there will be much more information in future huge
redshift surveys in the range of scales where beyond-linear perturbation theory
is both necessary and sufficient than in the fully linear regime.Comment: 24 pg., 5 fi
Solar parameters for modeling interplanetary background
The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE)
Working Team of the International Space Science Institute in Bern, Switzerland,
was to establish a common calibration of various UV and EUV heliospheric
observations, both spectroscopic and photometric. Realization of this goal
required an up-to-date model of spatial distribution of neutral interstellar
hydrogen in the heliosphere, and to that end, a credible model of the radiation
pressure and ionization processes was needed. This chapter describes the solar
factors shaping the distribution of neutral interstellar H in the heliosphere.
Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant
radiation pressure force acting on neutral H atoms in the heliosphere, solar
EUV radiation and the photoionization of heliospheric hydrogen, and their
evolution in time and the still hypothetical variation with heliolatitude.
Further, solar wind and its evolution with solar activity is presented in the
context of the charge exchange ionization of heliospheric hydrogen, and in the
context of dynamic pressure variations. Also the electron ionization and its
variation with time, heliolatitude, and solar distance is presented. After a
review of all of those topics, we present an interim model of solar wind and
the other solar factors based on up-to-date in situ and remote sensing
observations of solar wind. Results of this effort will further be utilised to
improve on the model of solar wind evolution, which will be an invaluable asset
in all heliospheric measurements, including, among others, the observations of
Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far
UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific
Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe
Resistência anti-helmíntica em nematoides gastrintestinais de pequenos ruminantes: avanços e limitações para seu diagnóstico
A seleção e a crescente disseminação de nematoides resistentes aos anti-helmínticos mais comumente utilizados, benzimidazóis (BZs), imidazotiazóis e lactonas macrocíclicas (LMs), constituem um sério entrave na produção de pequenos ruminantes em todo o mundo. O uso de métodos eficientes e sensíveis para a detecção e o monitoramento da resistência anti-helmíntica no campo torna-se urgente, especialmente para os grupos de BZs e LMs, devido aos constantes relatos de resistência. A obtenção de um diagnóstico preciso e precoce da resistência é extremamente importante para auxiliar a tomada de decisão em programas de controle parasitário, com o objetivo de preservar a vida útil dos produtos e limitar o desenvolvimento da resistência nas populações de nematoides. Os testes in vivo e, mais recentemente, os testes in vitro têm sido desenvolvidos para a detecção de nematoides resistentes aos principais grupos de anti-helmínticos. No entanto, a disponibilidade de testes in vitro validados e o seu uso prático ainda são muito limitados. Embora o teste de redução na contagem de ovos nas fezes (TRCOF, in vivo - indireto) seja o principal método de escolha para a detecção de resistência no campo, vem recebendo críticas quanto à validade dos resultados, e passa por significativas modificações. Além disso, o desenvolvimento de técnicas moleculares a partir de alterações genômicas gerou avanços consideráveis nessa área de investigação, com o uso de mutações nos códons 167, 198 e 200 do gene da β-tubulina como principais SNPs (polimorfismos de nucleotídeo único; do inglês Single Nucleotide Polymorphisms) associados à resistência aos BZs. A presente revisão tem o objetivo de discutir os métodos de diagnóstico disponíveis para a detecção de resistência anti-helmíntica em nematoides de pequenos ruminantes, destacando progressos e obstáculos para seu uso na rotina laboratorial e no campo
The Psychological Science Accelerator’s COVID-19 rapid-response dataset
In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data
- …