953 research outputs found

    Properties of Odd Gap Superconductors

    Full text link
    A new class of superconductors with the gap function {\it odd} under time reversal is considered. Some of the physical properties of these superconductors such as the Meissner effect, composite condensate, gapless spectrum and transition from the {\it odd} gap superconductor to the BCS state at lower temperatures are discussed.Comment: 9 pages + 2 fig, LA-UR-93-299

    Super black hole as spinning particle: Supersymmetric baglike core

    Get PDF
    We consider particlelike solutions to supergravity based on the Kerr-Newman black hole (BH) solution. The BH singularity is regularized by means of a phase transition to a new vacuum state near the core region confining a dual gauge field. Supersymmetric BPS-saturated domain wall model is suggested which can provide this phase transition and formation the stable charged superconducting core. For spinning particle the core takes the form of thin, relativistically rotaiting disk.Comment: 9 pages, Latex, plenary talks given at the School-Workshop Praha-Spin-2001 (Prague,July 15-28,2001) and at the XXIV International Workshop on Fundamental Problems of HEP and Field Theory (IHEP, June 2001, Protvino

    On the effective potential for Horava-Lifshitz-like theories with the arbitrary critical exponent

    Get PDF
    We calculate the one-loop effective potential for Horava-Lifshitz-like QED and Yukawa-like theory for arbitrary values of the critical exponent and the space-time dimension.Comment: 10 pages, version accepted in PL

    Probing the Planck Scale with Neutrino Oscillations

    Get PDF
    Quantum gravity "foam", among its various generic Lorentz non-invariant effects, would cause neutrino mixing. It is shown here that, if the foam is manifested as a nonrenormalizable effect at scale M, the oscillation length generically decreases with energy EE as (E/M)^(-2). Neutrino observatories and long-baseline experiments should have therefore already observed foam-induced oscillations, even if M is as high as the Planck energy scale. The null results, which can be further strengthened by better analysis of current data and future experiments, can be taken as experimental evidence that Lorentz invariance is fully preserved at the Planck scale, as is the case in critical string theory.Comment: 11 pages, 2 figures. Final version published in PRD. 1 figure, references, clarifications and explanations added. Results unchange

    Decoherence and CPT Violation in a Stringy Model of Space-Time Foam

    Full text link
    I discuss a model inspired from the string/brane framework, in which our Universe is represented as a three brane, propagating in a bulk space time punctured by D0-brane (D-particle) defects. As the D3-brane world moves in the bulk, the D-particles cross it, and from an effective observer on D3 the situation looks like a ``space-time foam'' with the defects ``flashing'' on and off (``D-particle foam''). The open strings, with their ends attached on the brane, which represent matter in this scenario, can interact with the D-particles on the D3-brane universe in a topologically non-trivial manner, involving splitting and capture of the strings by the D0-brane defects. Such processes are described by logarithmic conformal field theories on the world-sheet. Physically, they result in effective decoherence of the string matter on the D3 brane, and as a result, of CPT Violation, but of a type that implies an ill-defined nature of the effective CPT operator. Due to electric charge conservation, only electrically neutral (string) matter can exhibit such interactions with the D-particle foam. This may have unique, experimentally detectable, consequences for electrically-neutral entangled quantum matter states on the brane world, in particular the modification of the pertinent EPR Correlation of neutral mesons in a meson factory.Comment: 41 pages Latex, five eps figures incorporated. Uses special macro

    Standard Model Higgs boson mass from inflation: two loop analysis

    Get PDF
    We extend the analysis of \cite{Bezrukov:2008ej} of the Standard Model Higgs inflation accounting for two-loop radiative corrections to the effective potential. As was expected, higher loop effects result in some modification of the interval for allowed Higgs masses m_min<m_H<m_max, which somewhat exceeds the region in which the Standard Model can be considered as a viable effective field theory all the way up to the Planck scale. The dependence of the index n_s of scalar perturbations on the Higgs mass is computed in two different renormalization procedures, associated with the Einstein (I) and Jordan (II) frames. In the procedure I the predictions of the spectral index of scalar fluctuations and of the tensor-to-scalar ratio practically do not depend on the Higgs mass within the admitted region and are equal to n_s=0.97 and r=0.0034 respectively. In the procedure II the index n_s acquires the visible dependence on the Higgs mass and and goes out of the admitted interval at m_H below m_min. We compare our findings with the results of \cite{DeSimone:2008ei}.Comment: 24 paged, 9 figures. Journal version (typos fixed, expanded discussions

    Detection Limits for Super-Hubble Suppression of Causal Fluctuations

    Full text link
    We investigate to what extent future microwave background experiments might be able to detect a suppression of fluctuation power on large scales in flat and open universe models. Such suppression would arise if fluctuations are generated by causal processes, and a measurement of a small suppression scale would be problematic for inflation models, but consistent with many defect models. More speculatively, a measurement of a suppression scale of the order of the present Hubble radius could provide independent evidence for a fine-tuned inflation model leading to a low-density universe. We find that, depending on the primordial power spectrum, a suppression scale modestly larger than the visible Horizon can be detected, but that the detectability drops very rapidly with increasing scale. For models with two periods of inflation, there is essentially no possibility of detecting a causal suppression scale.Comment: 8 pages, 4 figures, revtex, In Press Physical Review D 200

    Observers in an accelerated universe

    Get PDF
    If the current acceleration of our Universe is due to a cosmological constant, then a Coleman-De Luccia bubble will nucleate in our Universe. In this work, we consider that our observations could be likely in this framework, consisting in two infinite spaces, if a foliation by constant mean curvature hypersurfaces is taken to count the events in the spacetime. Thus, we obtain and study a particular foliation, which covers the existence of most observers in our part of spacetime.Comment: revised version, accepted in EPJ

    The ambiguity-free four-dimensional Lorentz-breaking Chern-Simons action

    Get PDF
    The four dimensional Lorentz-breaking finite and determined Chern-Simons like action is generated as a one loop perturbative correction via an appropriate Lorentz-breaking coupling of the gauge field with the spinor field. Unlike the known schemes of calculations, within this scheme this term is found to be regularization independent.Comment: Revtex4, 4 page
    • …
    corecore