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The four-dimensional Lorentz-breaking finite and determined Chern–Simons like action is generated as
a one-loop perturbative correction via an appropriate Lorentz-breaking coupling of the gauge field with
the spinor field. Unlike the known schemes of calculations, within this scheme this term is found to be
regularization independent.
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The possibility of violation of the Lorentz and CPT symmetries
in the nature has been intensively discussed in recent years [1–17].
Several theoretical investigations have pointed out that these sym-
metries can be broken. In these studies it was mostly suggested
that this violation can be implemented in QED via adding the
Chern–Simons-like term LCS = 1

2 kμεμαβγ Fαβ Aγ , with kμ being a
constant four-vector characterizing the preferred direction of the
space–time, to the photon sector, with, at the same time, another
CPT-odd term, i.e., ψ̄/bγ5ψ , is added to the fermion sector, with
the bμ is a constant four-vector introducing CPT symmetry break-
ing. It is well known that this extension of the QED does not break
the gauge symmetry of the action and equations of motion but it
modifies the dispersion relations for different polarization of pho-
tons and Dirac spinors. The Chern–Simons-like term is known to
have some important implications, such as birefringence of light
in the vacuum [9]. Many interesting investigations in the context
of Lorentz-CPT violation have appeared recently in the literature.
For instance, several issues were addressed, such as Cherenkov-
type mechanism called “vacuum Cherenkov radiation” to test the
Lorentz symmetry [18], changing of gravitational redshifts for dif-
ferently polarized Maxwell–Chern–Simons photons [19], evidence
for the Lorentz-CPT violation from the measurement of CMB po-
larization [20], supersymmetric extensions [21], breaking of the
Lorentz group down to the little group associated with kμ [22]
and magnetic monopoles inducing electric current [23]. Among
these developments one of the most interesting and controversial
results is the dynamical origin of the Lorentz-breaking parameter
kμ which arises due to integration over the fermion fields in the
modified Dirac action involving the bμ vector. The result is the
induction of the Chern–Simons-like term via radiative corrections
which may lead to a relation between the parameters kμ and bμ .
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The induction of the Chern–Simons-like Lorentz-CPT violating
term, LCS, is one of the most important results in the study of the
Lorentz symmetry violation [3,4,8]. This term naturally emerges as
a perturbative correction in the theory suggested in [4] as a possi-
ble extension of QED by an axial-vector term

L= ψ̄(i/∂ − m)ψ − ψ̄/bγ5ψ − eψ̄/Aψ. (1)

After carrying out the integration over fermions, one can obtain
the relation between the coefficients kμ and bμ in terms of some
loop integrals with some of them being divergent. Therefore one
has to implement some regularization to calculate these integrals,
thus, the constant C relating the coefficients as kμ = Cbμ turns
out to be dependent on the regularization scheme used [24]. The
ambiguity of the results manifested in the dependence on the reg-
ularization scheme has been intensively discussed in the literature,
and several studies have shown that C can be found to be finite
but undetermined [25–29]. Astrophysical observations impose very
stringent experimental bounds on kμ (see [30] for different esti-
mations of the Lorentz-breaking coefficients). Since the coefficient
kμ of the radiatively induced Chern–Simons term depends on bμ

it is natural to expect that the constant bμ can also suffer an ex-
perimental bound in this framework. However, if ambiguities are
present there is no way to know the experimental bounds for the
constant bμ , because C is simply undetermined. In other words,
we cannot define the fate of the constant that is responsible for
the Lorentz and CPT violation in the fermion sector by straightfor-
ward measuring kμ . In the sequel we are going to extend the well
studied Lagrangian (1) in attempt to shed some light on the issue
of inducing Chern–Simons term in the ambiguity-free manner.

In this Letter we propose an extension of the usual theory
through introduction of new chiral couplings which can eliminate
such ambiguities. So, let us extend the usual Lagrangian (1) as fol-
lows:

L= ψ̄(i/∂ − m)ψ − ψ̄/b(1 + γ5)ψ − eψ̄/A(1 − γ5)ψ. (2)
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In order to show that the above Lagrangian preserves gauge invari-
ance we rewrite it in terms of new gauge fields, a vector field and
an axial field, in the form [31]

L= ψ̄(i/∂ − m − /V − /Aγ5)ψ, (3)

where the vector and axial gauge fields are defined as /V = /b + e/A
and /A = /b − e/A , respectively. In this sense one can understand bμ

and Aμ as R- and L-handed external fields. Hence, this Lagrangian
is invariant under the local vector U V (1) gauge transformation

ψ → exp
[
iα(x)

]
ψ,

ψ̄ → ψ̄ exp
[−iα(x)

]
,

Vμ → Vμ − ∂μα(x). (4)

The couplings we propose in the theory imply in a special
gauge invariant and Lorentz-CPT violating theory which we call
“extended chiral QED”, where divergences among loop integrals are
canceled. The extension is based on the observation that one can
extend and impose some restrictions on the gauge invariant and
CPT-Lorentz violating Lagrangian (1) by replacing /b and /A accord-
ing to the transformations

/bγ5 → /b(1 + γ5),

/A → /A(1 − γ5). (5)

One can also verify that other combinations of signs in the in-
teracting terms above produce either only divergent integrals or
mixture of divergent and finite integrals. Note that both bμ and
Aμ manifest themselves as external fields with opposite chiralities
coupled to fermion fields. As we will show below, in this model
the divergences are canceled and no regularization scheme is re-
quired. As we just anticipated, by combining other signs of γ5
in (2), one could also construct interactions with same chirality,
but in this case the divergences would persist.

The one-loop effective action Seff[b, A] of the gauge field Aμ

in this theory can be expressed in the form of the following func-
tional trace

Seff[b, A] = −i Tr ln
[
/p − m − /b(1 + γ5) − e/A(1 − γ5)

]
. (6)

Notice that in this expression, the Tr symbol stands for the trace
over Dirac matrices, trace over internal space, as well as for the in-
tegration in momentum and coordinate spaces. Hence, in the case
of Eq. (6) the calculations are complicated since because the elec-
tromagnetic field Aμ is coordinate dependent, hence it does not
commute with functions of momentum. Therefore it is not easy to
separate out the momentum and space dependent quantities and
carry out the integrations in respective spaces. To solve this prob-
lem, we will use the method of derivative expansion [32] (see also
[24]), and proceed as follows.

The functional trace in (6) can be represented as

Seff[b, A] = Seff[b] + S ′
eff[b, A], (7)

where the first term is Seff[b] = −i Tr ln[/p − m − /b(1 + γ5)], which
does not depend on the gauge field, and the only nontrivial dy-
namics is concentrated in the second term S ′

eff[b, A] given by the
following power series

S ′
eff[b, A] = i Tr

∞∑
n=1

1

n

[
1

/p − m − /b(1 + γ5)
e/A(1 − γ5)

]n

. (8)

To obtain the Chern–Simons-like term we should expand this ex-
pression up to the second order in the gauge field

S ′
eff[b, A] = S(2)

eff [b, A] + · · · . (9)
The dots in (9) stand for the terms of higher orders in the gauge
field. Here

S(2)

eff [b, A] = − ie2

2
Tr

[
Sb(p)/A(1 − γ5)Sb(p)/A(1 − γ5)

]
, (10)

where Sb(p) is the bμ dependent propagator of the theory defined
as

Sb(p) = i

/p − m − /b(1 + γ5)
. (11)

Now, we can apply the key identity of the derivative expansion
method [32], that is,

Aμ(x)Sb(p) = Sb(p − i∂)Aμ(x), (12)

with the propagator Sb(p − i∂) is expanded up to the first order in
derivatives as

Sb(p − i∂) = Sb(p) + Sb(p)/∂ Sb(p) + · · · . (13)

Substituting this expression into Eq. (10), we obtain

S(2)

eff [b, A] =
∫

d4xΠλμν Aμ∂ν Aλ, (14)

with the one-loop self-energy tensor is given by

Πλμν = − ie2

2

∫
d4 p

(2π)4
tr

[
Sb(p)γ μ(1 − γ5)

× Sb(p)γ λ Sb(p)γ ν(1 − γ5)
]
, (15)

where the symbol tr denotes the trace of the product of the
gamma matrices. Using a perturbative method for fermion prop-
agator, we can expand Sb(p) in the following series in bμ

Sb(p) = S(p) + S(p)
(−i/b(1 + γ5)

)
S(p) + · · · , (16)

with S(p) being the usual fermion propagator. We find

Πλμν = − ie2

2

∫
d4 p

(2π)4
tr

[
S(p)

(−i/b(1 + γ5)
)

S(p)γ μ(1 − γ5)

× S(p)γ λ S(p)γ ν(1 − γ5) + S(p)γ μ(1 − γ5)

× S(p)
(−i/b(1 + γ5)

)
S(p)γ λ S(p)γ ν(1 − γ5)

+ S(p)γ μ(1 − γ5)S(p)γ λ S(p)
(−i/b(1 + γ5)

)
× S(p)γ ν(1 − γ5)

]
. (17)

Thus, taking into account the fact that {γ5, γ
μ} = 0 and (γ5)

2 = 1
and applying the following relation for trace

tr
(
γ λγ μγ νγ ργ5

) = 4iελμνρ, (18)

we can write down the simple expression for self-energy tensor
Πλμν as

Πμνλ = 8ie2m2bρ

∫
d4 p

(2π)4

Nμνρλ

(p2 − m2)4
, (19)

where

Nμνρλ = 2εμνρθ pλ pθ + εμνρλ
(

p2 − m2). (20)

The key property of this expression is that, unlike the results ob-
tained earlier [8,24,33–35], this result is manifestly finite and does
not require any regularization. The exact, regularization indepen-
dent, value for Πλμν is

Πλμν = ελμνρbρ
e2

3π2
. (21)

Thus, the effective action (14) acquires the familiar form
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S = 1

2

∫
d4xελμνρkρ Aμ Fνλ, (22)

with the following relation between the constant four-vectors kρ

and bρ

kρ = e2

3π2
bρ. (23)

The numerical coefficient relation is finite and fixed, being reg-
ularization independent. We emphasize that this result is to be
contrasted with other results obtained earlier being different from
any other finite result previously found in the model (1), regard-
less of using regulators or not. For example, in [8] the coefficient

3
16π2 was found, in [10] the coefficient − 1

16π2 was found for the

massless fermions and 3
16π2 for the massive ones, in [12]— 1

4π2 , in

[15,16]— 3
8π2 , and in [24,35] there were found several results such

as 1
4π2 , 3

16π2 and 3
8π2 .

Thus, our Lorentz-CPT violating “extended chiral QED” theory
radiatively induces a Chern–Simons term which displays unique-
ness of the result due to absence of the divergences achieved
without imposing any regularization. A natural justification of our
result can be based on the fact that the model considered in (2)
represents a more complete description of the spinor-vector cou-
pling than the usual model (1). We see that, within the deriva-
tive expansion method, for the model (1) only three contributions
arise, whereas in our model (2) twelve contributions are present.
This phenomenon can be related to the symmetry of the new chi-
ral coupling terms in the Lagrangian (2). In this Lagrangian new
vertices and new insertions into the fermion propagator are in-
troduced. They can generate new one-loop contributions in com-
parison with the usual model (1), with they are responsible for
divergence cancellations.

To explain how the cancellation of divergences and ambiguities
occurs in the theory, let us consider the one-loop Feynman dia-
grams contributing to the two-point vertex function of the vector
fields. The fermion propagator is

= i(/p + m)

p2 − m2

and the coefficients for CPT violation lead to insertions into the
fermion propagator

= −i/bγ5, = −i/b.

The chiral and usual fermion–photon vertex are respectively

= ieγ μγ5, = −ieγ μ,

where e is the fermion charge and μ the space–time index on the
photon line.

We find that the following diagrams contribute to the two–
point function:

(a) (b) (c)
(d) (e) (f)

(g) (h)

The contributions to the one-loop self-energy tensor for these
graphs look like:

Π
μν
a,c,e,g(q) = e2

∫
d4 p

(2π)4
tr

[
γ μS(p)γ ν S(p + q)/bγ5 S(p + q)

− γ μS(p)γ νγ5 S(p + q)/bS(p + q)

− γ μγ5 S(p)γ ν S(p + q)/bS(p + q)

+ γ μγ5 S(p)γ νγ5 S(p + q)/bγ5 S(p + q)
]
, (24)

for the sum of the graphs a, c, e, g and

Π
μν
b,d, f ,h(q) = e2

∫
d4 p

(2π)4
tr

[
γ μ S(p)/bγ5 S(p)γ ν S(p + q)

− γ μ S(p)/bS(p)γ νγ5 S(p + q)

− γ μγ5 S(p)/bS(p)γ ν S(p + q)

+ γ μγ5 S(p)/bγ5 S(p)γ νγ5 S(p + q)
]
, (25)

for the sum of the graphs b,d, f ,h. Here S(p) is the usual fermion
propagator. Considering the self-energy tensors generated by each
of these graphs, we can find finite and infinite contributions which
must be regularized. Thus, separate summation of contributions of
the graphs a, c, e, g or b,d, f ,h can produce finite but undeter-
mined results, whereas the complete summation of all contribu-
tions leads to a result that coincides with the finite and regular-
ization independent (determined) Chern–Simons term coefficient
(23) obtained within the derivative expansion method. Thus, in
the framework of our extension we find that a theory is improved
in such a way that quantum calculations give us a finite non-
ambiguous result at the one-loop approximation.

We summarize our results as follows. Within our present anal-
ysis, we have shown that the presence of chiral couplings pre-
serving a specific gauge invariance for the Lagrangian density, by
using the derivative expansion method, allows to avoid ambigui-
ties. These special symmetry transformations maintain the gauge
invariance that takes place both for the Lagrangian density and
for the action, which yields a new finite and determined result
for the Chern–Simons coefficient. Differently of the usual theory
studied earlier (see [24] and references therein), where the break-
ing of the gauge invariance occurs at the quantum level, in the
present case the gauge invariance is maintained at both classical
and quantum levels because of the absence of regulators, and the
problem of divergences and ambiguities does not arise. The ra-
diatively induced Chern–Simons term is not gauge invariant but
its space–time integral is. Equivalently, it means that the Chern–
Simons term is invariant only for zero momentum [25]. The reg-
ularization schemes such as Pauli–Villars regularization and gauge
invariant dimensional regularization, commonly used to regularize
divergent integrals in the usual theory, require gauge invariance
at all energy scales which excludes a priori the possibility of in-
ducing a Chern–Simons term. Since Chern–Simons terms are gauge
invariant only for zero momentum, one has to use regularization
schemes which also could involve gauge invariance only at zero
momentum, in order to find a finite and determined Chern–Simons
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term coefficient kμ . A natural way to solve this problem would
consist in finding the possibility of computing the Chern–Simons
coefficient without using any regularization scheme. Thus one pos-
sibility that we have chosen in this investigation was to search for
a theory where the divergences in one-loop graphs could be elim-
inated in such a way that the remaining integrals of the theory
would be ambiguity-free. We were able to find a theory that really
does the job. The theory we formulated invokes new chiral cou-
plings which preserve a special gauge invariance whereas Lorentz
and CPT symmetries are violated. The theory represents itself as a
model where both bμ , which is present in the axial-vector term,
and the gauge vector potential Aμ manifest themselves as external
fields with opposite chirality interacting with fermion fields that
renders a complete cancelation of divergences and, at the same
time, no regularization scheme is required.

Acknowledgements

This work was partially supported by Conselho Nacional de De-
senvolvimento Científico e Tecnológico (CNPq). The work by A.Yu.P.
has been supported by CNPq-FAPESQ DCR program, CNPq project
No. 350400/2005-9.

References

[1] V.A. Kostelecky, S. Samuel, Phys. Rev. D 39 (1989) 683.
[2] S. Carroll, G. Field, R. Jackiw, Phys. Rev. D 41 (1990) 1231.
[3] M. Goldhaber, V. Trimble, J. Astrophys. Astron. 17 (1996) 17;

S. Carrol, G. Field, Phys. Rev. Lett. 79 (1997) 2394.
[4] D. Colladay, V.A. Kostelecky, Phys. Rev. D 55 (1997) 6760.
[5] S. Coleman, S.L. Glashow, Phys. Lett. B 405 (1997) 249;

S. Coleman, S.L. Glashow, Phys. Rev. D 59 (1998) 116008.
[6] D. Colladay, V.A. Kostelecky, Phys. Rev. D 58 (1998) 116002.
[7] J.M. Chung, P. Oh, Phys. Rev. D 60 (1999) 067702.
[8] R. Jackiw, V.A. Kostelecky, Phys. Rev. Lett. 82 (1999) 3572.
[9] R. Jackiw, Nucl. Phys. B (Proc. Suppl.) 108 (2002) 30.
[10] M. Perez-Victoria, Phys. Rev. Lett. 83 (1999) 2518.
[11] J.M. Chung, Phys. Rev. D 60 (1999) 127901;

J.M. Chung, Phys. Lett. B 461 (1999) 138.
[12] A.A. Andrianov, P. Giacconi, R. Soldati, JHEP 0202 (2002) 030.
[13] O. Bertolami, C.S. Carvalho, Phys. Rev. D 61 (2000) 103002.
[14] M. Chaichian, W.F. Chen, R. Gonzalez Felipe, Phys. Lett. B 503 (2001) 215.
[15] B. Altschul, Phys. Rev. D 69 (2004) 125009.
[16] B. Altschul, Phys. Rev. D 70 (2004) 101701.
[17] O. Bertolami, J.G. Rosa, Phys. Rev. D 71 (2005) 097901.
[18] R. Lehnert, R. Potting, Phys. Rev. Lett. 93 (2004) 110402.
[19] E. Kant, F.R. Klinkhamer, Nucl. Phys. B 731 (2005) 125.
[20] B. Feng, M. Li, J.-Q. Xia, X. Chen, X. Zhang, Phys. Rev. Lett. 96 (2006) 221302.
[21] H. Belich, J.L. Boldo, L.P. Colatto, J.A. Helayel-Neto, A.L.M.A. Nogueira, Phys. Rev.

D 68 (2003) 065030.
[22] A.J. Hariton, R. Lehnert, Phys. Lett. A 367 (2007) 11.
[23] N.M. Barraz Jr., J.M. Fonseca, W.A. Moura-Melo, J.A. Helayel-Neto, Phys. Rev.

D 76 (2007) 027701.
[24] F.A. Brito, J.R. Nascimento, E. Passos, A.Yu. Petrov, JHEP 0706 (2007) 016.
[25] R. Jackiw, Int. J. Mod. Phys. B 14 (2000) 2011;

J.M. Chung, Phys. Rev. D 60 (1999) 127901.
[26] G. Bonneau, Nucl. Phys. B 593 (2001) 398;

G. Bonneau, hep-th/0109105.
[27] W.F. Chen, hep-th/0106035.
[28] M. Perez-Victoria, JHEP 0104 (2001) 032.
[29] G. Bonneau, Nucl. Phys. B 764 (2007) 83.
[30] V.A. Kostelecky, N. Russell, arXiv: 0801.0287 [hep-ph].
[31] R.A. Bertlmann, Anomalies in Quantum Field Theory, Cambridge Univ. Press,

1996.
[32] I.J.R. Aitchison, C.M. Fraser, Phys. Lett. B 146 (1984) 63;

I.J.R. Aitchison, C.M. Fraser, Phys. Rev. D 31 (1985) 2605;
C.M. Fraser, Z. Phys. C 28 (1985) 101;
A.I. Vainshtein, V.I. Zakharov, V.A. Novikov, M.A. Shifman, Yad. Fiz. (Sov. J. Nucl.
Phys.) 39 (1984) 77;
J.A. Zuk, Phys. Rev. D 32 (1985) 2653;
M.K. Gaillard, Nucl. Phys. B 268 (1986) 669;
A. Das, A. Karev, Phys. Rev. D 36 (1987) 623;
K.S. Babu, A. Das, P. Panigrahi, Phys. Rev. D 36 (1987) 3725.

[33] A.A. Andrianov, P. Giacconi, R. Soldati, JHEP 0202 (2002) 030.
[34] T. Mariz, J.R. Nascimento, E. Passos, R.F. Ribeiro, JHEP 0510 (2005) 019.
[35] M. Gomes, J.R. Nascimento, E. Passos, A.Yu. Petrov, A.J. da Silva, Phys. Rev. D 76

(2007) 047701.


	The ambiguity-free four-dimensional Lorentz-breaking Chern-Simons action
	Acknowledgements
	References


