43 research outputs found

    The vertical transport of methane from different potential emission types on Mars

    Get PDF
    The contrasting evolutionary behavior of the vertical profile of methane from three potential release scenarios is analysed using a global circulation model with assimilated temperature profiles. Understanding the evolving methane distribution is essential for interpretation of future retrievals of the methane vertical profile taken by instruments on the ExoMars Trace Gas Orbiter spacecraft. We show that at methane release rates constrained by previous observations and modelling studies, discriminating whether the methane source is a sustained or instantaneous surface emission requires at least ten sols of tracking the emission. A methane source must also be observed within five to ten sols of the initial emission to distinguish whether the emission occurs directly at the surface or within the atmosphere via destabilization of metastable clathrates. Assimilation of thermal data is shown to be critical for the most accurate back-tracking of an observed methane plume to its origin

    A reanalysis of ozone on Mars from assimilation of SPICAM observations

    Get PDF
    We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S–10°S from LS=135–180° and at northern polar (60°N–90°N) latitudes during northern fall (LS=150–195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S–10°S from LS=135–180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics

    Crossed-beam energy transfer : Polarization effects and evidence of saturation

    Get PDF
    Recent results on crossed-beam energy transfer are presented. Wavelength tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves (IAWs) with amplitudes up to . Increasing the initial probe intensity to access larger IAW amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam's polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effects in a multibeam situation can dramatically enhance the expected amount of energy transfer

    3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part I

    No full text
    International audienceWe describe the development of a 3D Monte-Carlo model to study hot-electron transport in ionized or partially ionized targets, considering regimes typical of inertial confinement fusion. Electron collisions are modeled using a mixed simulation algorithm that considers both soft and hard scattering phenomena. Soft collisions are modeled according to multiple-scattering theories, i.e., considering the global effects of the scattering centers on the primary particle. Hard collisions are simulated by considering a two-body interaction between an electron and a plasma particle. Appropriate differential cross sections are adopted to correctly model scattering in ionized or partially ionized targets. In particular, an analytical form of the differential cross section that describes a collision between an electron and the nucleus of a partially ionized atom in a plasma is proposed. The loss of energy is treated according to the continuous slowing down approximation in a plasma stopping power theory. Validation against Geant4 is presented. The code will be implemented as a module in 3D hydrodynamic codes, providing a basis for the development of robust shock ignition schemes and allowing more precise interpretations of current experiments in planar or spherical geometries

    3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II

    No full text
    International audienceWe describe two numerical investigations performed using a 3D plasma Monte-Carlo code, developed to study hot-electron transport in the context of inertial confinement fusion. The code simulates the propagation of hot electrons in ionized targets, using appropriate scattering differential cross sections with free plasma electrons and ionized or partially ionized atoms. In this paper, we show that a target in the plasma state stops and diffuses electrons more effectively than a cold target (i.e., a target under standard conditions in which ionization is absent). This is related to the fact that in a plasma, the nuclear potential of plasma nuclei has a greater range than in the cold case, where the screening distance is determined by the electronic structure of atoms. However, in the ablation zone created by laser interaction, electrons undergo less severe scattering, counterbalancing the enhanced diffusion that occurs in the bulk. We also show that hard collisions, i.e., collisions with large polar scattering angle, play a primary role in electron beam diffusion and should not be neglected. An application of the plasma Monte-Carlo model to typical shock ignition implosions suggests that hot electrons will not give rise to any preheating concerns if their Maxwellian temperature is lower than 25–30 keV, although the presence of populations at higher temperatures must be suppressed. This result does not depend strongly on the initial angular divergence of the electron beam set in the simulations

    Inverse ray tracing on icosahedral tetrahedron grids for non-linear laser plasma interaction coupled to 3D radiation hydrodynamics

    No full text
    International audienceA novel approach to efficiently model 3-D laser plasma interactions at fluid scales is presented. This method, implemented in the IFRIIT propagation code developed at CELIA, relies on inverse ray tracing to compute laser fields at arbitrary locations in a plasma. This enables to describe the fields at high order in space compared to standard forward ray tracing approaches. In addition, inverse ray tracing enables the use of etalon integral methods to reconstruct caustic fields and greatly speeds up calculations of cross-beam energy transfer by decoupling the ray amplitude and ray phase calculations. A comparison of the inverse and forward methods for 3-D calculations of fields in presence or not of cross-beam energy transfer illustrates the significant advantages of the inverse method. Conversely, while the inverse method is well suited to most spherical plasma profiles, it currently cannot treat concave profiles or target holders. The coupling of IFRIIT with the 3-D ASTER radiative hydrodynamics code developped at the Laboratory for Laser Energetics is then presented. ASTER and IFRIIT resolve their respective equations on separate grids which communicate through interpolation. As such, IFRIIT uses a dedicated laser grid adapted to the computations at play, which also allows to use different parallelization methods for both codes: block decomposition for the hydrodynamics versus domain duplication for the laser. Applications to direct-drive implosions for inertial confinement fusion are presented, for which a geodesic icosahedron grid is implemented in IFRIIT. The performances of the ASTER/IFRIIT coupling is demonstrated by conducting simulations of cryogenic implosions performed on the OMEGA laser system, in presence of various sources of 3-D effects; laser port geometry, cross-beam energy transfer, beam imbalance and target mis-alignment. Comparison with neutron data, measured through bang-time, for a cryogenic implosion experiment shows an excellent agreement for the laser-plasma coupling
    corecore