155 research outputs found

    The evolution of substructure II: linking dynamics to environment

    Full text link
    We present results from a series of high-resolution N-body simulations that focus on the formation and evolution of eight dark matter halos, each of order a million particles within the virial radius. We follow the time evolution of hundreds of satellite galaxies with unprecedented time resolution, relating their physical properties to the differing halo environmental conditions. The self-consistent cosmological framework in which our analysis was undertaken allows us to explore satellite disruption within live host potentials, a natural complement to earlier work conducted within static potentials. Our host halos were chosen to sample a variety of formation histories, ages, and triaxialities; despite their obvious differences, we find striking similarities within the associated substructure populations. Namely, all satellite orbits follow nearly the same eccentricity distribution with a correlation between eccentricity and pericentre. We also find that the destruction rate of the substructure population is nearly independent of the mass, age, and triaxiality of the host halo. There are, however, subtle differences in the velocity anisotropy of the satellite distribution. We find that the local velocity bias at all radii is greater than unity for all halos and this increases as we move closer to the halo centre, where it varies from 1.1 to 1.4. For the global velocity bias we find a small but slightly positive bias, although when we restrict the global velocity bias calculation to satellites that have had at least one orbit, the bias is essentially removed.Comment: 14 pages, 14 figures, MNRAS in pres

    The Simple Non-degenerate Relativistic Gas: Statistical Properties and Brownian Motion

    Full text link
    This paper shows a novel calculation of the mean square displacement of a classical Brownian particle in a relativistic thermal bath. The result is compared with the expressions obtained by other authors. Also, the thermodynamic properties of a non-degenerate simple relativistic gas are reviewed in terms of a treatment performed in velocity space.Comment: 6 pages, 2 figure

    First order and stable relativistic dissipative hydrodynamics

    Full text link
    Relativistic thermodynamics is derived from kinetic equilibrium in a general frame. Based on a novel interpretation of Lagrange multipliers in the equilibrium state we obtain a generic stable but first order relativistic dissipative hydrodynamics. Although this was believed to be impossible, we circumvent this difficulty by a specific handling of the heat flow.Comment: revised, 11 pages, accepted for publication in PL

    On the gravitational instability of a dissipative medium

    Get PDF
    This paper shows that the ordinary Jeans wave number can be obtained as a limiting case of a more general approach that includes dissipative effects. Corrections to the Jeans critical mass associated to viscosity are established. Some possible implications of the results are finally discussed.Comment: 5 pages, RevTe

    The velocity function in the local environment from LCDM and LWDM constrained simulations

    Full text link
    Using constrained simulations of the local Universe for generic cold dark matter and for 1keV warm dark matter, we investigate the difference in the abundance of dark matter halos in the local environment. We find that the mass function within 20 Mpc/h of the Local Group is ~2 times larger than the universal mass function in the 10^9-10^13 M_odot/h mass range. Imposing the field of view of the on-going HI blind survey ALFALFA in our simulations, we predict that the velocity function in the Virgo-direction region exceeds the universal velocity function by a factor of 3. Furthermore, employing a scheme to translate the halo velocity function into a galaxy velocity function, we compare the simulation results with a sample of galaxies from the early catalog release of ALFALFA. We find that our simulations are able to reproduce the velocity function in the 80-300 km/s velocity range, having a value ~10 times larger than the universal velocity function in the Virgo-direction region. In the low velocity regime, 35-80 km/s, the warm dark matter simulation reproduces the observed flattening of the velocity function. On the contrary, the simulation with cold dark matter predicts a steep rise in the velocity function towards lower velocities; for V_max=35 km/s, it forecasts ~10 times more sources than the ones observed. If confirmed by the complete ALFALFA survey, our results indicate a potential problem for the cold dark matter paradigm or for the conventional assumptions about energetic feedback in dwarf galaxies.Comment: 24 pages, 14 figures, 1 table, accepted for publication in Ap

    Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nanodisks

    Get PDF
    Ambient-atmosphere oxidation in the temperature range of 90-450 C was performed over Zn films composed by well-faceted hexagonal nanodisks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nanodisks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Raman scattering measurements. It was found that Zn nanodisks keep its original shape only when they are annealed at 90 or 150 C. Smooth oxidation ocurred only on the rectangular faces of Zn nandodisks heated at 150 C. Thermal oxidation at 250 C favored growth of ZnO nanoneedles over the surface of the Zn nanodisks. Hexagonal-shape of Zn nanodisks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 C

    The phase-space distribution of infalling dark matter subhalos

    Full text link
    We use high-resolution numerical simulations to study the physical properties of subhalos when they merge into their host halos. An improved algorithm is used to identify the subhalos. We then examine their spatial and velocity distributions in spherical and triaxial halo models. We find that the accretion of satellites preferentially occurs along the major axis and perpendicular to the spin axis of the host halo. Furthermore, the massive subhalos show a stronger preference to be accreted along the major axis of the host halo than the low-mass ones. Approximate fitting formulae are provided for the physical properties of subhalos. Combined with analytical and semi-analytic techniques, these empirical formulae provide a useful basis for studying the subsequent evolution of subhalos and satellite galaxies in their hosts. Future studies should however account for satellites that may not be undergoing the first infall in their evolution.Comment: revised version in press in MN with added material and references, 21 pages and 25 figure
    • …
    corecore