200 research outputs found

    The Predictive Skill of Eurasian Snow Cover and Arctic Sea Ice on Mid-High Latitude Winter Weather

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所 2階 大会議

    The role of the Siberian high in northern hemisphere climate variability

    Get PDF
    The dominant mode of sea level pressure (SLP) variability during the winter months in the Northern Hemisphere (NH) is characterized by a dipole with one anomaly center covering the Arctic with the opposite sign anomaly stretched across the mid-latitudes. Associated with the SLP anomaly, is a surface temperature anomaly induced by the anomalous circulation. We will show that this anomaly pattern originates in the early fall, on a much more regional scale, in Siberia. As the season progresses this anomaly pattern propagates and amplifies to dominate much of the extratropical NH, making the Siberian high a dominant force in NH climate variability in winter. Also since the SLP and surface temperature anomalies originate in a region of maximum fall snow cover variability, we argue that snow cover partially forces the phase of winter variability and can potentially be used for the skillful prediction of winter climate.National Science Foundation (U.S.) (Grant ATM-9902433

    The NAO, the AO, and global warming: How closely related?

    Get PDF
    ABSTRACT The North Atlantic Oscillation (NAO) and the closely related Arctic Oscillation (AO) strongly affect Northern Hemisphere (NH) surface temperatures with patterns reported similar to the global warming trend. The NAO and AO were in a positive trend for much of the 1970s and 1980s with historic highs in the early 1990s, and it has been suggested that they contributed significantly to the global warming signal. The trends in standard indices of the AO, NAO, and NH average surface temperature for December-February, 1950, and the associated patterns in surface temperature anomalies are examined. Also analyzed are factors previously identified as relating to the NAO, AO, and their positive trend: North Atlantic sea surface temperatures (SSTs), Indo-Pacific warm pool SSTs, stratospheric circulation, and Eurasian snow cover. Recently, the NAO and AO indices have been decreasing; when these data are included, the overall trends for the past 30 years are weak to nonexistent and are strongly dependent on the choice of start and end date. In clear distinction, the wintertime hemispheric warming trend has been vigorous and consistent throughout the entire period. When considered for the whole hemisphere, the NAO/AO patterns can also be distinguished from the trend pattern. Thus the December-February warming trend may be distinguished from the AO and NAO in terms of the strength, consistency, and pattern of the trend. These results are insensitive to choice of index or dataset. While the NAO and AO may contribute to hemispheric and regional warming for multiyear periods, these differences suggest that the large-scale features of the global warming trend over the last 30 years are unrelated to the AO and NAO. The related factors may also be clearly distinguished, with warm pool SSTs linked to the warming trend, while the others are linked to the NAO and AO

    Seasonal predictability of wintertime precipitation in Europe using the snow advance index

    Get PDF
    This study tests the applicability of Eurasian snow cover increase in October, as described by the recently published snow advance index (SAI), for forecasting December–February precipitation totals in Europe. On the basis of a classical correlation analysis, global significance was obtained and locally significant correlation coefficients of up to 0.89 and 20.78 were found for the Iberian Peninsula and southern Norway, respectively. For a more robust assessment of these results, a linear regression approach is followed to hindcast the precipitation sums in a 1-yr-out cross-validation framework, using the SAI as the only predictor variable. With this simple empirical approach, local-scale precipitation could be reproduced with a correlation of up to 0.84 and 0.71 for the Iberian Peninsula and southern Norway, respectively, while catchment aggregations on the Iberian Peninsula could be hindcast with a correlation of up to 0.73. These findings are confirmed when repeating the hindcast approach to a degraded but much longer version of the SAI. With the recommendation to monitor the robustness of these results as the sample size of the SAI increases, the authors encourage its use for the purpose of seasonal forecasting in southern Norway and the Iberian Peninsula, where general circulation models are known to perform poorly for the variable in question.SB, RM, and JMG acknowledge funding from the CICYT Project CGL2010-21869 and from QWeCI (EU Grant 243964) and the CSIC JAE-PREDOC program. JC is supported by the National Science Foundation Grants ARC-0909459 and ARC-0909457, and NOAA Grant NA10OAR4310163. The authors are thankful for the helpful comments of the three anonymous reviewers and acknowledge the E-OBS dataset from the ENSEMBLES project (http://ensembles-eu.metoffice.com/) as well the ECA&D(http:// eca.knmi.nl/) and AEMET station datasets

    Adaptive Bias Correction for Improved Subseasonal Forecasting

    Full text link
    Subseasonal forecasting \unicode{x2013} predicting temperature and precipitation 2 to 6 weeks \unicode{x2013} ahead is critical for effective water allocation, wildfire management, and drought and flood mitigation. Recent international research efforts have advanced the subseasonal capabilities of operational dynamical models, yet temperature and precipitation prediction skills remains poor, partly due to stubborn errors in representing atmospheric dynamics and physics inside dynamical models. To counter these errors, we introduce an adaptive bias correction (ABC) method that combines state-of-the-art dynamical forecasts with observations using machine learning. When applied to the leading subseasonal model from the European Centre for Medium-Range Weather Forecasts (ECMWF), ABC improves temperature forecasting skill by 60-90% and precipitation forecasting skill by 40-69% in the contiguous U.S. We couple these performance improvements with a practical workflow, based on Cohort Shapley, for explaining ABC skill gains and identifying higher-skill windows of opportunity based on specific climate conditions.Comment: 16 pages of main paper and 2 pages of appendix tex

    Online Learning with Optimism and Delay

    Full text link
    Inspired by the demands of real-time climate and weather forecasting, we develop optimistic online learning algorithms that require no parameter tuning and have optimal regret guarantees under delayed feedback. Our algorithms -- DORM, DORM+, and AdaHedgeD -- arise from a novel reduction of delayed online learning to optimistic online learning that reveals how optimistic hints can mitigate the regret penalty caused by delay. We pair this delay-as-optimism perspective with a new analysis of optimistic learning that exposes its robustness to hinting errors and a new meta-algorithm for learning effective hinting strategies in the presence of delay. We conclude by benchmarking our algorithms on four subseasonal climate forecasting tasks, demonstrating low regret relative to state-of-the-art forecasting models.Comment: ICML 2021. 9 pages of main paper and 26 pages of appendix tex

    Arctic warming amplifies climate change and its impacts

    Get PDF
    This ScienceBrief Review examines the evidence linking Arctic warming to the amplification of climate change impacts in Arctic, boreal and mid-latitude regions. It synthesises findings from more than 190 peer-reviewed scientific articles gathered using ScienceBrief. The evidence shows that the Arctic region has warmed at least twice as much as the global average, leading to a number of environmental consequences. The extent and thickness of sea-ice have decreased and rates of permafrost thaw have increased in recent decades. The impacts of rising mean annual temperatures have been exacerbated by an increase in heatwaves this century. These changes amplify climate change and its impacts. Permafrost thaw and wildfires are releasing greenhouse gases and amplifying climate change, while the loss of sea ice is reducing the amount of solar energy reflected by the Earth’s surface. There is ongoing debate about how changes in the Arctic energy balance influence patterns of extreme weather in the mid-latitudes
    corecore