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ABSTRACT

This study tests the applicability of Eurasian snow cover increase in October, as described by the recently

published snow advance index (SAI), for forecasting December–February precipitation totals in Europe. On

the basis of a classical correlation analysis, global significance was obtained and locally significant correlation

coefficients of up to 0.89 and 20.78 were found for the Iberian Peninsula and southern Norway, respectively.

For a more robust assessment of these results, a linear regression approach is followed to hindcast the pre-

cipitation sums in a 1-yr-out cross-validation framework, using the SAI as the only predictor variable. With

this simple empirical approach, local-scale precipitation could be reproduced with a correlation of up to 0.84

and 0.71 for the Iberian Peninsula and southern Norway, respectively, while catchment aggregations on the

Iberian Peninsula could be hindcast with a correlation of up to 0.73. These findings are confirmed when

repeating the hindcast approach to a degraded but much longer version of the SAI. With the recommendation

to monitor the robustness of these results as the sample size of the SAI increases, the authors encourage its use

for the purpose of seasonal forecasting in southern Norway and the Iberian Peninsula, where general cir-

culation models are known to perform poorly for the variable in question.

1. Introduction

In a recently published study, Cohen and Jones (2011)

demonstrated that the wintertime Arctic Oscillation

(AO) as well as the concurrent temperature and mean

sea level pressure anomalies over a large fraction of the

Northern Hemispheric extratropics are statistically as-

sociated with Eurasian snow cover during the previous

October. To describe the latter, they introduce the snow

advance index (SAI), which, as an alternative to more

sophisticated numerical simulations (Palmer et al. 2004),

is proposed as a simple measure of seasonal prediction

(Goddard et al. 2001). Theoretical considerations on the

physical ground of this statistical link were provided by

Cohen et al. (2007), who presented a conceptual model

for how Eurasian snow cover in the fall can modulate the

phase and magnitude of the following winter AO. For

example, when snow cover is above normal, this leads to

a strengthened Siberian high and colder surface tem-

peratures across northern Eurasia. The intensification of

the Siberian high, along with the thermal impacts of en-

hanced snow cover and topographic forcing, corresponds

to a positive wave activity flux anomaly in the late fall and

early winter, leading to stratospheric warming and to a

lagging tropospheric negative AO response in winter.

As wintertime precipitation anomalies in Europe are

well known to be associated with the North Atlantic

Oscillation (Hurrell 1995; Rodriguez-Puebla et al. 2001),

which can be interpreted as the regional manifestation of

the AO (Cohen and Barlow 2005), we expect the SAI to

be a simple tool for seasonal prediction in this area. This

hypothesis is tested here, by relating it to precipitation

totals of the following December–February (DJF) sea-

son, using gridded observations and station data. The

importance of this effort becomes evident when taking

into account that the predictive power of global circula-

tion models is known to be poor for DJF precipitation in
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Europe (Doblas-Reyes et al. 2009). Consequently, if this

variable could be skillfully forecast one month ahead

using a single empirical index, this would considerably

ease the decision-making process of stakeholders in-

volved in seasonal prediction (Garcı́a-Morales and

Dubus 2007).

2. Data

Daily accumulated precipitation data are taken from

the recently updated (fifth) version of the Ensembles-

Based Predictions of Climate Changes and Their Im-

pacts gridded dataset (E-OBS) (Haylock et al. 2008),

which comes on a resolution of 0.258 and, regarding the

density of the underlying station network, has been

considerably improved with respect to earlier versions.

To test for a possible dataset dependence of the results, we

additionally repeat our analysis with station data from the

European Climate Assessment and Dataset (ECA&D)

project (Klein Tank et al. 2002; Klok and Klein Tank

2009) as well as a high-quality precipitation series pro-

vided by the Spanish Meteorological Agency [Agencia

Estatal de Meteorologı́a (AEMET)]. The daily precipi-

tation sums are aggregated to DJF totals for each year.

Note that skewness and outliers are present in the data,

which has to be taken into account in the subsequent

analysis (see section 3).

For the predictor variable, we use both the daily and

weekly versions of the SAI (Cohen and Jones 2011).

These standardized indices measure the rate of increase

of Eurasian snow cover in October, as described by the

regression coefficient of the least squares fit of the daily/

weekly Eurasian snow cover extension in a geographical

domain covering 258–608N, 08–1808E. The daily SAI was

calculated upon satellite retrievals from the Interactive

Multisensor Snow and Ice Mapping System (IMS), which

are available on a resolution of 24 km for each day from

1997 onward (Ramsay 1998). The weekly SAI, in turn,

was obtained from the National Oceanic and Atmo-

spheric Administration (NOAA)’s satellite-sensed ob-

servations, offering a much longer time series (from 1972

onward) at the expense of a lower temporal and spatial

resolution (Robinson et al. 1993). While the E-OBS and

ECA&D data are available until DJF 2010/11, the last

winter is not covered by the Spanish station data, leading

to a sample size of n 5 14/13 (n 5 39/38) in case of ap-

plying the daily (weekly) SAI.

3. Methods

To assess the statistical relationship between October

SAI and DJF precipitation, the Pearson correlation

coefficient r was applied. The p value of a given r was

calculated using a two-sided Student’s t test (null hy-

pothesis: r 5 0). To account for skewness and outliers, all

results were double-checked by using the Spearman

rank correlation in addition to the Pearson correlation.

Both measures led to similar results.

To test for the effect of temporal autocorrelation

on the significance of our results, we computed the lag-1

FIG. 1. Pearson correlation coefficients between the October daily SAI and the precipitation sums of the following

DJF (n 5 14; critical value 5 60.53). Locally significant correlations (alocal 5 0.05) are shaded in black. Global

significance was obtained (aglobal 5 0.05); all calculations are based on E-OBS.
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autocorrelation coefficients of the applied time series and

found them to be significant (a 5 0.05) in less than 5%

of all cases. Thus, the unwanted effect of committing too

many type 1 errors due to serial correlation (Kristjánsson

et al. 2002) is negligible in this study. Similarly, a linear

detrending of the applied time series did not change the

results either.

To assess the global significance of the computed cor-

relations, we used the method described in Livezey and

Chen (1983). In this case, the t test was applied to a

Gaussian random sample (which substitutes the SAI

sample) and the observational time series from E-OBS.

Subsequently, the percentage of grid boxes where p

values below 0.05 were found —that is, the null hypoth-

esis of zero correlation was erroneously rejected— was

calculated. By repeating this procedure a thousand

times, a sample of 1000 areal fractions was generated,

whose corresponding 95th percentile defines the criti-

cal value for declaring global significance at a test level

of 5%.

For the purpose of operational seasonal forecasting,

a 1-yr-out cross-validation approach (Michaelsen 1987)

is applied for each grid box or station: Each of the i 5

1, 2, . . . , n DJF precipitation sums is hindcasted with the

regression equation obtained from regressing the re-

maining n 2 1 SAI values against its corresponding

precipitation sums. By repeating this approach n times,

a complete hindcast obtained from out-of-sample pre-

dictor data is reconstructed, which is then validated

against its corresponding observations by using the

FIG. 2. Significant (alocal 5 0.05) r between hindcast and observed DJF precipitation sums, applying (a) the daily

SAI (n 5 14; critical value 5 0.53) and (b) the weekly SAI (n 5 39; critical value 5 0.32). Spatially averaged hindcasts

based on the daily SAI are contrasted against its corresponding observations for (c) Spain and (d) southern Norway;

all calculations are based on E-OBS.
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Pearson correlation. The resulting coefficients are

referred to as ‘‘hindcast correlations.’’

4. Results

Figure 1 maps the Pearson correlation coefficient be-

tween the October daily SAI and the precipitation totals

of the following DJF season for the E-OBS gridded da-

taset. Global significance (aglobal 5 0.05) was obtained,

and locally significant (alocal 5 0.05) correlations are most

evident and spatially consistent on the Iberian Peninsula

and southern Norway, yielding values of up to 0.89 and

20.78, respectively.

Predictability for the above-mentioned two regions is

confirmed by the hindcasts obtained from out-of-

sample predictor data and using both gridded data

from E-OBS (see Fig. 2a) and station data from AEMET

and ECA&D (see Fig. 3). Note that only the areas of

significant hindcasts (alocal 5 0.05)—also referred to as

‘‘skillful hindcasts’’—are shown. Over the Iberian Pen-

insula and southern Norway, local DJF precipitation

sums can be hindcast with an accuracy of up to 0.84 and

0.71, respectively.

When using the longer weekly SAI (see Fig. 2b), these

findings are generally confirmed. Hindcast correlations

are systematically lower than for the daily index, which

is expected due to the lower accuracy of the underlying

satellite data and the resulting weaker link to the win-

tertime AO (Cohen and Jones 2011). However, because

of the larger sample size, the area of significant skill

(alocal 5 0.05) extends along the whole western Scan-

dinavian Peninsula. These results are confirmed when

repeating the hindcast approach for station data from

AEMET and ECA&D (not shown) and thus have little

sensitivity to the choice of dataset. Note that areas of

significant skill outside the above-mentioned regions

could generally not be confirmed by the station data and

hence are not considered in this study.

To assess the performance of the empirical forecasting

approach on subcontinental to catchment scale, spatially

aggregated hindcasts and observations were compared

for southern Norway (south of the Bergen Fjord at

648N) and the Iberian Peninsula (see Table 1).

When applying the daily SAI (n 5 14), significant (a 5

0.05) correlations of 0.58 and 0.61 are found for southern

Norway and Portugal, respectively, while the results for

FIG. 3. Significant (alocal 5 0.05) r between hindcast and observed DJF precipitation sums based on the daily

SAI, using (a) AEMET station data for Spain (n 5 13; critical value 5 0.55) and (b) ECA&D station data for

southern Norway (n 5 14; critical value 5 0.53); also shown are the Spanish hydrological catchments as defined in

Table 1.

TABLE 1. Pearson correlation between hindcast and observed

DJF precipitation totals, aggregated to catchment, country, and

subcontinental scale; one or two asterisks are assigned in case cor-

relation is significant at a test level of 5% or 1%, respectively.

Catchment

Area of

aggregation

Daily SAI

(n 5 14)

Weekly SAI

(n 5 39)

1 Norte 0.51 0.37*

2 Duero 0.64* 0.42**

3 Tajo 0.71** 0.51**

4 Guadiana 0.73** 0.50**

5 Guadalquivir 0.67** 0.49**

6 Sur 0.49 0.44**

7 Segura 0.34 0.16

8 Levante 0.63* 0.28

9 Ebro 0.68** 0.31

10 Catalana 0.39 0.16

11 Baleares 0.40 0.03

Portugal 0.61* 0.49**

Spain 0.78** 0.47**

Iberian Peninsula 0.75** 0.48**

Southern Norway 0.58* 0.43**
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Spain and the Iberian Peninsula as a whole (0.78 and

0.75, respectively) are highly significant (a 5 0.01). To

give a visual example, the time series for southern

Norway and Spain are plotted in Figs. 2c,d. With regard

to the catchments of Iberian Peninsula (see Table 1;

Fig. 3a), hindcast correlations are highly significant

for the Guadiana (0.73), Tajo (0.71), Ebro (0.68), and

Guadalquivir (0.67) and significant for the Duero (0.64)

and Levante (0.63) (see Table 1, third column). These

results are confirmed when applying the longer weekly

SAI (n 5 39), with the difference that the skill gradient

between Atlantic and Mediterranean catchments of the

Iberian Peninsula becomes more obvious (see Table 1,

fourth column).

5. Discussion and conclusions

The present study has shown that DJF precipitation

totals on the Iberian Peninsula and southern Norway

can be skillfully forecast from the previous October’s

snow advance index, which is available for operational

seasonal prediction at the onset of November. Using

linear regression in a 1-yr-out cross-validation frame-

work, and applying the index based on daily satellite

retrievals as only predictor variable, local precipitation

totals in the former mentioned two regions have been

hindcast with highly significant correlations of up to 0.84

and 0.71, while the corresponding results for the spa-

tially aggregated hindcast are 0.75 and 0.58, respectively.

These results outperform the skill of general circulation

models (Doblas-Reyes et al. 2009; Frias et al. 2010) and

competing empirical indices (Folland et al. 2012), and in

case of the Iberian Peninsula, even exceed the pre-

dictability that can be potentially achieved by the latter

(Folland et al. 2012).

With the recommendation to reassess these findings

as the sample size of the daily snow advance index

increases, we conclude that it is the most reliable source

of predictability for wintertime precipitation on the

Iberian Peninsula and southern Norway and underline

the great potential of applying state-of-the art remote

sensing products for the purpose of empirical forecasting

in earth system science. Since the predictive power of

Eurasian snow cover increase is highest in regions where

general circulation models perform poorest, we support

the hypothesis that optimizing the snow–atmosphere

coupling in numerical models (Hardiman et al. 2008) is

key for improving their skill.
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