47 research outputs found

    Thermodynamic study of interactions between ZnO and ZnO binding peptides using isothermal titration calorimetry

    Get PDF
    Whilst material specific peptide binding sequences have been identified using a combination of combinato-rial methods and computational modelling tools, a deep molecular level understanding of the fundamental principles through which these interactions occur and in some instances modify the morphology of inorganic materials is far from being fully realized. Understanding the thermodynamic changes that occur during peptide-inorganic interactions and correlating these to structural modifications of the inorganic materials could be the key to achieving and mastering con-trol over material formation processes. This study is a detailed investigation applying isothermal titration calorimetry (ITC) to directly probe thermodynamic changes that occur during interaction of ZnO binding peptides (ZnO-BPs) and ZnO. The ZnO-BPs used are reported sequences G-12 (GLHVMHKVAPPR), GT-16 (GLHVMHKVAPPR-GGGC) and alanine mutants of G-12 (G-12A6, G-12A11 and G-12A12) whose interaction with ZnO during solution synthesis studies have been extensively investigated. The interactions of the ZnO-BPs with ZnO yielded biphasic isotherms comprising both an endo-thermic and an exothermic event. Qualitative differences were observed in the isothermal profiles of the different pep-tides and ZnO particles studied. Measured ΔG values were between -6 and -8.5 kcal/mol and high adsorption affinity val-ues indicated the occurrence of favourable ZnO-BP-ZnO interactions. ITC has great potential in its use to understand peptide-inorganic interactions and with continued development, the knowledge gained may be instrumental for simplifi-cation of selection processes of organic molecules for the advancement of material synthesis and design

    Interaction of β-Sheet Folds with a Gold Surface

    Get PDF
    The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance

    Going Up to Jerusalem

    No full text
    Kiddush Cup consisting of three sections: conical base rising at center; conical cup narrow at joint with base, widening towards top; lid topped with clear jewel-like element. Base and cup are connected by metal spiral; a disk can be moved along the spiral 30 x 30 x 30 cm. base 2001.139a; cup 2001.139b; lid 2001.139cDigital imagedigitize

    The Effects of Proteasome Inhibitors on Telomerase Activity and Regulation in Multiple Myeloma Cells

    No full text
    The importance of telomerase, the enzyme that maintains telomere length, has been reported in many malignancies in general and in multiple myeloma (MM) in particular. Proteasome inhibitors are clinically used to combat effectively MM. Since the mechanism of action of proteasome inhibitors has not been fully described we sought to clarify its potential effect on telomerase activity (TA) in MM cells. Previously we showed that the first generation proteasome inhibitor bortezomib (Brt) inhibits TA in MM cells by both transcriptional and post-translational mechanisms and has a potential clinical significance. In the current study we focused around the anti- telomerase activity of the new generation of proteasome inhibitors, epoxomicin (EP) and MG-132 in order to clarify whether telomerase inhibition represents a class effect. We have exposed MM cell lines, ARP-1, CAG, RPMI 8226 and U266 to EP or MG and the following parameters were assessed: viability; TA, hTERT expression, the binding of hTERT (human telomerase reverse transcriptase) transcription factors and post-translational modifications. Epoxomicin and MG-132 differentially downregulated the proliferation and TA in all MM cell lines. The downregulation of TA and the expression of hTERT were faster in CAG than in ARP-1 cells. Epoxomicin was more potent than MG-132 and therefore further mechanistic studies were performed using this compound. The inhibition of TA was mainly transcriptionally regulated. The binding of three positive regulator transcription factors: SP1, c-Myc and NF-κB to the hTERT promoter was decreased by EP in CAG cells as well as their total cellular expression. In ARP-1 cells the SP1 and c-MYC binding and protein levels were similarly affected by EP while NF-κB was not affected. Interestingly, the transcription factor WT-1 (Wilms’ tumor-1) exhibited an increased binding to the hTERT promoter while its total cellular amount remained unchanged. Our results combined with our previous study of bortezomib define telomerase as a general target for proteasome inhibitors. The inhibitory effect of TA is exerted by several regulatory levels, transcriptional and post translational. SP1, C-Myc and NF-κB were involved in mediating these effects. A novel finding of this study is the role of WT-1 in the regulation of telomerase which appears as a negative regulator of hTERT expression. The results of this study may contribute to future development of telomerase inhibition as a therapeutic modality in MM

    Protein-surface interactions: challenging experiments and computations

    No full text
    Protein-surface interactions are fundamental in natural processes, and have great potential for applications ranging from nanotechnology to medicine. A recent workshop highlighted the current achievements and the main challenges in the field. Copyright (C) 2009 John Wiley & Sons, Ltd
    corecore