199 research outputs found
Carbon-catalyzed oxidation of SO2 by NO2 and air
A series of experiments was performed using carbon particles (commercial furnace black) as a surrogate for soot particles. Carbon particles were suspended in water, and gas mixtures were bubbled into the suspensions to observe the effect of carbon particles on the oxidation of SO2 by air and NO2. Identical gas mixtures were bubbled into a blank containing only pure water. After exposure each solution was analyzed for pH and sulfate. It was found that NO2 greatly enhances the oxidation of SO2 to sulfate in the presence of carbon particles. The amount of sulfate found in the blanks was significantly less. Under the conditions of these experiments no saturation of the reaction was observed and SO2 was converted to sulfate even in a highly acid medium (pH or = 1.5)
What Does an Exemplary Middle School Mathematics Teacher Look Like? The Use of a Professional Development Rubric
A School University Research Network (SURN) committee composed of current mathematics teachers, central office math supervisors, building administrators, mathematicians, and mathematics educators researched numerous sources regarding best practices in mathematics instruction. The resulting professional development rubric synthesizes their findings and can serve a professional development role by providing teachers and administrators with a tool to develop clarity and consensus on best mathematics instructional practices, and how these practices are implemented in the classroom. It is also being used as a tool for cooperating teachers in their supervision of student teachers and as a reflective method for self-evaluation
SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo
The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work
Application of Dynamic System Identification to Timber Beams - part I
In this first part of a two-part paper, development of a method of dynamic system identification for timber beams is presented with an analytical verification of the method using a finite-element model. A method of global nondestructive evaluation for identifying local damage and decay in timber beams is investigated in this paper. Experimental modal analysis is used in conjunction with a previously developed damage localization algorithm. The damage localization algorithm utilizes changes in modal strain energy between the mode shapes of a calibrated model, representing the undamaged state of the beam of interest, and the experimentally obtained mode shapes for a timber beam. Analytical evaluations were performed to demonstrate and verify the use of this method of global nondestructive evaluation for the localization of damage or decay in timber beams. In a companion paper, experimental laboratory tests are presented that verify the use of dynamic system identification to locate damage within timber beams
Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic
Photochemistry occuring in biomass burning plumes over the tropical south Atlantic is analyzed using data collected during the Transport and Atmospheric Chemistry Near the Equator‐Atlantic aircraft expedition conducted during the tropical dry season in September 1992 and a photochemical point model. Enhancement ratios (ΔY/ΔX, where Δ indicates the enhancement of a compound in the plume above the local background mixing ratio, Y are individual hydrocarbons, CO, O3, N2O, HNO3, peroxyacetyl nitrate (PAN), CH2O, acetone, H2O2, CH3OOH, HCOOH, CH3COOH or aerosols and X is CO or CO2) are reported as a function of plume age inferred from the progression of Δnon‐methane hydrocarbons/ΔCO enhancement ratios. Emission, formation, and loss of species in plumes can be diagnosed from progression of enhancement ratios from fresh to old plumes. O3 is produced in plumes over at least a 1 week period with mean ΔO3/ΔCO = 0.7 in old plumes. However, enhancement ratios in plumes can be influenced by changing background mixing ratios and by photochemical loss of CO. We estimate a downward correction of ∼20% in enhancement ratios in old plumes relative to ΔCO to correct for CO loss. In a case study of a large persistent biomass burning plume at 4‐km we found elevated concentrations of PAN in the fresh plume. The degradation of PAN helped maintain NOx mixing ratios in the plume where, over the course of a week, PAN was converted to HNO3. Ozone production in the plume was limited by the availability of NOx, and because of the short lifetime of O3 at 4‐km, net ozone production in the plume was negligible. Within the region, the majority of O3 production takes place in air above median CO concentration, indicating that most O3 production occurs in plumes. Scaling up from the mean observed ΔO3/ΔCO in old plumes, we estimate a minimum regional O3 production of 17×1010molecules O3 cm−2 s−1. This O3 production rate is sufficient to fully explain the observed enhancement in tropospheric O3 over the tropical South Atlantic during the dry season
Jumping without Using Legs: The Jump of the Click-Beetles (Elateridae) Is Morphologically Constrained
To return to their feet, inverted click-beetles (Elateridae) jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant “takeoff” angle (79.9°±1.56°, n = 9 beetles) that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing
Formaldehyde, glyoxal, and methylglyoxal in air and cloudwater at a rural mountain site in central Virginia
As part of the Shenandoah Cloud and Photochemistry Experiment (SCAPE), we measured formaldehyde (HCHO), glyoxal (CHOCHO), and methylglyoxal (CH3C(O)CHO) concentrations in air and cloudwater at Pinnacles (elevation 1037 m) in Shenandoah National Park during September 1990. Mean gas‐phase concentrations of HCHO and CHOCHO were 980 and 44 pptv, respectively. The concentration of CH3C(O)CHO rarely exceeded the detection limit of 50 pptv. Mean cloudwater concentrations of HCHO and CHOCHO were 9 and 2 μM, respectively; the mean CH3C(O)CHO concentration was below its detection limit of 0.3 μM. The maximum carbonyl concentrations were observed during stagnation events with high O3, peroxides, and CO. Outside of these events the carbonyls did not correlate significantly with O3, CO, or NOy. Carbonyl concentrations and concentration ratios were consistent with a major source for the carbonyls from isoprene oxidation. Oxidation of CH4 supplies a significant background of HCHO. The carbonyl concentrations were indistinguishable in two size fractions of cloudwater having a cut at d=18 μm. Gas‐ and aqueous‐phase concentrations of HCHO from samples collected during a nighttime cloud event agree with thermodynamic equilibria within a factor of 2. Samples collected during a daytime cloud event show HCHO supersaturation by up to a factor of 4. Positive artifacts in the cloudwater samples due to hydrolysis of hydroxymethylhydroperoxide (HOCH2OOH) could perhaps account for this discrepancy
Research of working area development parameters in conditions of deep steep deposit finalizing
Отримано формули розрахунку об’єму запасів корисних копалин в приконтурній та глибинній зоні. Встановлено характер впливу параметрів доробки глибоких крутоспадних родовищ відкритим способом на доцільне положення поточних та проектних контурів кар’єру. Встановлено, що найменший середній коефіцієнт розкриву досягається при мінімальному значенні суми обсягів корисної копалини приконтурної зони лежачого і висячого боків покладу в проектному положенні. Найменший поточний коефіцієнт розкриву досягається при мінімальному значенні суми обсягів корисної копалини приконтурної зони лежачого і висячого боків покладу, а також робочого борту кар'єру в поточному положенні
- …