78 research outputs found

    Argon does not affect cerebral circulation or metabolism in male humans

    Get PDF
    Objective: Accumulating data have recently underlined argońs neuroprotective potential. However, to the best of our knowledge, no data are available on the cerebrovascular effects of argon (Ar) in humans. We hypothesized that argon inhalation does not affect mean blood flow velocity of the middle cerebral artery (Vmca), cerebral flow index (FI), zero flow pressure (ZFP), effective cerebral perfusion pressure (CPPe), resistance area product (RAP) and the arterio-jugular venous content differences of oxygen (AJVDO2), glucose (AJVDG), and lactate (AJVDL) in anesthetized patients. Materials and methods: In a secondary analysis of an earlier controlled cross-over trial we compared parameters of the cerebral circulation under 15 minutes exposure to 70%Ar/30%O2versus 70%N2/30%O2in 29 male patients under fentanyl-midazolam anaesthesia before coronary surgery. Vmca was measured by transcranial Doppler sonography. ZFP and RAP were estimated by linear regression analysis of pressure-flow velocity relationships of the middle cerebral artery. CPPe was calculated as the difference between mean arterial pressure and ZFP. AJVDO2, AJVDG and AJVDL were calculated as the differences in contents between arterial and jugular-venous blood of oxygen, glucose, and lactate. Statistical analysis was done by t-tests and ANOVA. Results: Mechanical ventilation with 70% Ar did not cause any significant changes in mean arterial pressure, Vmca, FI, ZFP, CPPe, RAP, AJVDO2, AJVDG, and AJVDL. Discussion: Short-term inhalation of 70% Ar does not affect global cerebral circulation or metabolism in male humans under general anaesthesia

    Neuroprotective properties of levosimendan in an in vitro model of traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the neuroprotective properties of levosimendan, a novel inodilator, in an in vitro model of traumatic brain injury.</p> <p>Methods</p> <p>Organotypic hippocampal brain slices from mouse pups were subjected to a focal mechanical trauma. Slices were treated after the injury with three different concentrations of levosimendan (0.001, 0.01 and 0.1 μM) and compared to vehicle-treated slices. After 72 hrs, the trauma was quantified using propidium iodide to mark the injured cells.</p> <p>Results</p> <p>A significant dose-dependent reduction of both total and secondary tissue injury was observed in cells treated with either 0.01 or 0.1 μM levosimendan compared to vehicle-treated slices.</p> <p><b>Conclusion</b></p> <p>Levosimendan represents a promising new pharmacological tool for neuroprotection after brain injury and warrants further investigation in an in vivo model.</p

    Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The α<sub>2</sub>-adrenoreceptor agonist dexmedetomidine is known to provide neuroprotection under ischemic conditions. In this study we investigated whether dexmedetomidine has a protective effect in an <it>in vitro </it>model for traumatic brain injury.</p> <p>Methods</p> <p>Organotypic hippocampal slice cultures were subjected to a focal mechanical trauma and then exposed to varying concentrations of dexmedetomidine. After 72 h cell injury was assessed using propidium iodide. In addition, the effects of delayed dexmedetomidine application, of hypothermia and canonical signalling pathway inhibitors were examined.</p> <p>Results</p> <p>Dexmedetomidine showed a protective effect on traumatically injured hippocampal cells with a maximum effect at a dosage of 1 μM. This effect was partially reversed by the simultaneous administration of the ERK inhibitor PD98059.</p> <p>Conclusion</p> <p>In this TBI model dexmedetomidine had a significant neuroprotective effect. Our results indicate that activation of ERK might be involved in mediating this effect.</p

    Increased FAT/CD36 Cycling and Lipid Accumulation in Myotubes Derived from Obese Type 2 Diabetic Patients

    Get PDF
    BACKGROUND: Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells. CONCLUSION/SIGNIFICANCE: Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation

    Novel Small-Molecule Inhibitors of Hepatitis C Virus Entry Block Viral Spread and Promote Viral Clearance in Cell Culture

    Get PDF
    Combinations of direct-acting anti-virals offer the potential to improve the efficacy, tolerability and duration of the current treatment regimen for hepatitis C virus (HCV) infection. Viral entry represents a distinct therapeutic target that has been validated clinically for a number of pathogenic viruses. To discover novel inhibitors of HCV entry, we conducted a high throughput screen of a proprietary small-molecule compound library using HCV pseudoviral particle (HCVpp) technology. We independently discovered and optimized a series of 1,3,5-triazine compounds that are potent, selective and non-cytotoxic inhibitors of HCV entry. Representative compounds fully suppress both cell-free virus and cell-to-cell spread of HCV in vitro. We demonstrate, for the first time, that long term treatment of an HCV cell culture with a potent entry inhibitor promotes sustained viral clearance in vitro. We have confirmed that a single amino acid variant, V719G, in the transmembrane domain of E2 is sufficient to confer resistance to multiple compounds from the triazine series. Resistance studies were extended by evaluating both the fusogenic properties and growth kinetics of drug-induced and natural amino acid variants in the HCVpp and HCV cell culture assays. Our results indicate that amino acid variations at position 719 incur a significant fitness penalty. Introduction of I719 into a genotype 1b envelope sequence did not affect HCV entry; however, the overall level of HCV replication was reduced compared to the parental genotype 1b/2a HCV strain. Consistent with these findings, I719 represents a significant fraction of the naturally occurring genotype 1b sequences. Importantly, I719, the most relevant natural polymorphism, did not significantly alter the susceptibility of HCV to the triazine compounds. The preclinical properties of these triazine compounds support further investigation of entry inhibitors as a potential novel therapy for HCV infection

    Towards a Rigorous Network of Protein-Protein Interactions of the Model Sulfate Reducer Desulfovibrio vulgaris Hildenborough

    Get PDF
    Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction

    Development of a quality indicator set to measure and improve quality of ICU care for patients with traumatic brain injury.

    Get PDF
    BACKGROUND: We aimed to develop a set of quality indicators for patients with traumatic brain injury (TBI) in intensive care units (ICUs) across Europe and to explore barriers and facilitators for implementation of these quality indicators. METHODS: A preliminary list of 66 quality indicators was developed, based on current guidelines, existing practice variation, and clinical expertise in TBI management at the ICU. Eight TBI experts of the Advisory Committee preselected the quality indicators during a first Delphi round. A larger Europe-wide expert panel was recruited for the next two Delphi rounds. Quality indicator definitions were evaluated on four criteria: validity (better performance on the indicator reflects better processes of care and leads to better patient outcome), feasibility (data are available or easy to obtain), discriminability (variability in clinical practice), and actionability (professionals can act based on the indicator). Experts scored indicators on a 5-point Likert scale delivered by an electronic survey tool. RESULTS: The expert panel consisted of 50 experts from 18 countries across Europe, mostly intensivists (N = 24, 48%) and neurosurgeons (N = 7, 14%). Experts agreed on a final set of 42 indicators to assess quality of ICU care: 17 structure indicators, 16 process indicators, and 9 outcome indicators. Experts are motivated to implement this finally proposed set (N = 49, 98%) and indicated routine measurement in registries (N = 41, 82%), benchmarking (N = 42, 84%), and quality improvement programs (N = 41, 82%) as future steps. Administrative burden was indicated as the most important barrier for implementation of the indicator set (N = 48, 98%). CONCLUSIONS: This Delphi consensus study gives insight in which quality indicators have the potential to improve quality of TBI care at European ICUs. The proposed quality indicator set is recommended to be used across Europe for registry purposes to gain insight in current ICU practices and outcomes of patients with TBI. This indicator set may become an important tool to support benchmarking and quality improvement programs for patients with TBI in the future

    Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

    Get PDF
    Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches
    corecore