259 research outputs found

    On the formation location of Uranus and Neptune as constrained by dynamical and chemical models of comets

    Full text link
    The D/H enrichment observed in Saturn's satellite Enceladus is remarkably similar to the values observed in the nearly-isotropic comets. Given the predicted strong variation of D/H with heliocentric distance in the solar nebula, this observation links the primordial source region of the nearly-isotropic comets with the formation location of Enceladus. That is, comets from the nearly-isotropic class were most likely fed into their current reservoir, the Oort cloud, from a source region near the formation location of Enceladus. Dynamical simulations of the formation of the Oort cloud indicate that Uranus and Neptune are, primarily, responsible for the delivery of material into the Oort cloud. In addition, Enceladus formed from material that condensed from the solar nebula near the location at which Saturn captured its gas envelope, most likely at or near Saturn's current location in the solar system. The coupling of these lines of evidence appears to require that Uranus and Neptune were, during the epoch of the formation of the Oort cloud, much closer to the current location of Saturn than they are currently. Such a configuration is consistent with the Nice model of the evolution of the outer solar system. Further measurements of the D/H enrichment in comets, particularly in ecliptic comets, will provide an excellent discriminator among various models of the formation of the outer solar system.Comment: 13 pages, 3 figures, ApJL accepte

    Molecular Tracers of Embedded Star Formation in Ophiuchus

    Full text link
    In this paper we analyze nine SCUBA cores in Ophiuchus using the second-lowest rotational transitions of four molecular species (12CO, 13CO, C18O, and C17O) to search for clues to the evolutionary state and star-formation activity within each core. Specifically, we look for evidence of outflows, infall, and CO depletion. The line wings in the CO spectra are used to detect outflows, spectral asymmetries in 13CO are used to determine infall characteristics, and a comparison of the dust emission (from SCUBA observations) and gas emission (from C18O) is used to determine the fractional CO freeze-out. Through comparison with Spitzer observations of protostellar sources in Ophiuchus, we discuss the usefulness of CO and its isotopologues as the sole indicators of the evolutionary state of each core. This study is an important pilot project for the JCMT Legacy Survey of the Gould Belt (GBS) and the Galactic Plane (JPS), which intend to complement the SCUBA-2 dust continuum observations with HARP observations of 12CO, 13CO, C18O, and C17O J = 3 - 2 in order to determine whether or not the cold dust clumps detected by SCUBA-2 are protostellar or starless objects. Our classification of the evolutionary state of the cores (based on molecular line maps and SCUBA observations) is in agreement with the Spitzer designation for six or seven of the nine SCUBA cores. However, several important caveats exist in the interpretation of these results, many of which large mapping surveys like the GBS may be able to overcome to provide a clearer picture of activity in crowded fields.Comment: 43 pages including 19 postscript figures. Accepted for publication in the PAS

    The Absolute Magnitude of RRc Variables From Statistical Parallax

    Full text link
    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 247 RRc selected from the All Sky Automated Survey (ASAS) for which high-quality light curves, photometry and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey (CARRS). We find that M_(V,RRc) = 0.52 +/- 0.11 at a mean metallicity of [Fe/H] = -1.59. This is to be compared with previous estimates for RRab stars (M_(V,RRab) = 0.75 +/- 0.13 and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M_(V, RRc) = 0.27 +/- 0.17). We find the bulk velocity of the halo to be (W_pi, W_theta, W_z) = (10.9,34.9,7.2) km/s in the radial, rotational and vertical directions with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (154.7, 103.6, 93.8) km/s. For the disk, we find (W_pi, W_theta, W_z) = (8.5, 213.2, -22.1) km/s with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (63.5, 49.6, 51.3) km/s. Finally, we suggest that UCAC2 proper motion errors may be overestimated by about 25%Comment: Submitted to ApJ. 11 pages including 6 figure

    Systematics of RR Lyrae Statistical Parallax III: Apparent Magnitudes and Extinctions

    Get PDF
    We sing the praises of the central limit theorem. Having previously removed all other possible causes of significant systematic error in the statistical parallax determination of RR Lyrae absolute magnitudes, we investigate systematic errors from two final sources of input data: apparent magnitudes and extinctions. We find corrections due to each of ~0.05 mag, i.e., ~1/2 the statistical error. However, these are of opposite sign and so roughly cancel. The apparent magnitude system that we previously adopted from Layden et al. was calibrated to the photometry of Clube & Dawe. Using Hipparcos photometry we show that the Clube & Dawe system is ~0.06 mag too bright. Extinctions were previously pinned to the HI-based map of Burstein & Heiles. We argue that A_V should rather be based on new COBE/IRAS dust-emission map of Schlegel, Finkbeiner & Davis. This change increases the mean A_V by ~0.05 mag. We find M_V=0.77 +/- 0.13 at [Fe/H]=-1.60 for a pure sample of 147 halo RR Lyraes, or M_V=0.80 +/- 0.11 at [Fe/H]=-1.71 if we incorporate kinematic information from 716 non-kinematically selected non-RR Lyrae stars from Beers & Sommer-Larsen. These are 2 and 3 sigma fainter than recent determinations of M_V from main sequence fitting of clusters using Hipparcos measurements of subdwarfs by Reid and Gratton et al. Since statistical parallax is being cleared of systematic errors and since the chance of a >2 sigma statistical fluctuation is <1/20, we conclude that these brighter determinations may be in error. In the course of three papers, we have corrected 6 systematic errors whose absolute values total 0.20 mag. Had these, contrary to the expectation of the central limit theorem, all lined up one way, they could have resolved the conflict in favor of the brighter determinations. In fact, the net change was only 0.06 mag.Comment: submitted to ApJ, 21 pages, 2 tables, 4 figure

    Mid-Infrared Imaging and Modelling of the Dust Shell around Post-AGB star HD 187885 (IRAS 19500-1709)

    Get PDF
    We present 10 and 20 micron images of IRAS 19500-1709 taken with the mid-infrared camera, OSCIR, mounted on the Gemini North Telescope. We use a 2-D dust radiation transport code to fit the spectral energy distribution from UV to sub-mm wavelengths and to simulate the images.Comment: 4 pages, 5 figures. To appear in "Asymmetric Planetary Nebulae III", eds. M.Meixner, J.Kastner, N.Soker & B.Balick. 2004, ASP Conference Serie

    Nemesis Reconsidered

    Full text link
    The hypothesis of a companion object (Nemesis) orbiting the Sun was motivated by the claim of a terrestrial extinction periodicity, thought to be mediated by comet showers. The orbit of a distant companion to the Sun is expected to be perturbed by the Galactic tidal field and encounters with passing stars, which will induce variation in the period. We examine the evidence for the previously proposed periodicity, using two modern, greatly improved paleontological datasets of fossil biodiversity. We find that there is a narrow peak at 27 My in the cross-spectrum of extinction intensity time series between these independent datasets. This periodicity extends over a time period nearly twice that for which it was originally noted. An excess of extinction events are associated with this periodicity at 99% confidence. In this sense we confirm the originally noted feature in the time series for extinction. However, we find that it displays extremely regular timing for about 0.5 Gy. The regularity of the timing compared with earlier calculations of orbital perturbation would seem to exclude the Nemesis hypothesis as a causal factor.Comment: 10 pages, 2 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The OSACA Database and a Kinematic Analysis of Stars in the Solar Neighborhood

    Get PDF
    We transformed radial velocities compiled from more than 1400 published sources, including the Geneva--Copenhagen survey of the solar neighborhood (CORAVEL-CfA), into a uniform system based on the radial velocities of 854 standard stars in our list. This enabled us to calculate the average weighted radial velocities for more than 25~000 HIPPARCOS stars located in the local Galactic spiral arm (Orion arm) with a median error of +-1 km/s. We use these radial velocities together with the stars' coordinates, parallaxes, and proper motions to determine their Galactic coordinates and space velocities. These quantities, along with other parameters of the stars, are available from the continuously updated Orion Spiral Arm CAtalogue (OSACA) and the associated database. We perform a kinematic analysis of the stars by applying an Ogorodnikov-Milne model to the OSACA data. The kinematics of the nearest single and multiple main-sequence stars differ substantially. We used distant (r\approx 0.2 kpc) stars of mixed spectral composition to estimate the angular velocity of the Galactic rotation -25.7+-1.2 km/s/kpc, and the vertex deviation,l=13+-2 degrees, and detect a negative K effect. This negative K effect is most conspicuous in the motion of A0-A5 giants, and is equal to K=-13.1+-2.0 km/s/kpc.Comment: 16 pages, 8 figure

    The evidence for and against astronomical impacts on climate change and mass extinctions: A review

    Full text link
    Numerous studies over the past 30 years have suggested there is a causal connection between the motion of the Sun through the Galaxy and terrestrial mass extinctions or climate change. Proposed mechanisms include comet impacts (via perturbation of the Oort cloud), cosmic rays and supernovae, the effects of which are modulated by the passage of the Sun through the Galactic midplane or spiral arms. Supposed periodicities in the fossil record, impact cratering dates or climate proxies over the Phanerozoic (past 545 Myr) are frequently cited as evidence in support of these hypotheses. This remains a controversial subject, with many refutations and replies having been published. Here I review both the mechanisms and the evidence for and against the relevance of astronomical phenomena to climate change and evolution. This necessarily includes a critical assessment of time series analysis techniques and hypothesis testing. Some of the studies have suffered from flaws in methodology, in particular drawing incorrect conclusions based on ruling out a null hypothesis. I conclude that there is little evidence for intrinsic periodicities in biodiversity, impact cratering or climate on timescales of tens to hundreds of Myr. Furthermore, Galactic midplane and spiral arm crossings seem to have little or no impact on biological or climate variation above background level. (truncated)Comment: 51 pages, 7 figures, 140 references. To appear in the International Journal of Astrobiology. For hyperref version with full resolution figures see http://www.mpia-hd.mpg.de/homes/calj/astimpact_ija.pd

    Simulations of the Population of Centaurs I: The Bulk Statistics

    Get PDF
    Large-scale simulations of the Centaur population are carried out. The evolution of 23328 particles based on the orbits of 32 well-known Centaurs is followed for up to 3 Myr in the forward and backward direction under the influence of the 4 massive planets. The objects exhibit a rich variety of dynamical behaviour with half-lives ranging from 540 kyr (1996 AR20) to 32 Myr (2000 FZ53). The mean half-life of the entire sample of Centaurs is 2.7 Myr. The data are analyzed using a classification scheme based on the controlling planets at perihelion and aphelion, previously given in Horner et al (2003). Transfer probabilities are computed and show the main dynamical pathways of the Centaur population. The total number of Centaurs with diameters larger than 1 km is estimated as roughly 44300, assuming an inward flux of one new short-period comet every 200 yrs. The flux into the Centaur region from the Edgeworth-Kuiper belt is estimated to be 1 new object every 125 yrs. Finally, the flux from the Centaur region to Earth-crossing orbits is 1 new Earth-crosser every 880 yrsComment: 15 pages, 2 figures, MNRAS in pres
    corecore