372 research outputs found

    RNA-MATE: a recursive mapping strategy for high-throughput RNA-sequencing data

    Get PDF
    Summary: Mapping of next-generation sequencing data derived from RNA samples (RNAseq) presents different genome mapping challenges than data derived from DNA. For example, tags that cross exon-junction boundaries will often not map to a reference genome, and the strand specificity of the data needs to be retained. Here we present RNA-MATE, a computational pipeline based on a recursive mapping strategy for placing strand specific RNAseq data onto a reference genome. Maximizing the mappable tags can provide significant savings in the cost of sequencing experiments. This pipeline provides an automatic and integrated way to align color-space sequencing data, collate this information and generate files for examining gene-expression data in a genomic context

    Do sputum or circulating blood samples reflect the pulmonary transcriptomic differences of COPD patients? A multi-tissue transcriptomic network META-analysis

    Get PDF
    BACKGROUND: Previous studies have identified lung, sputum or blood transcriptomic biomarkers associated with the severity of airflow limitation in COPD. Yet, it is not clear whether the lung pathobiology is mirrored by these surrogate tissues. The aim of this study was to explore this question. METHODS: We used Weighted Gene Co-expression Network Analysis (WGCNA) to identify shared pathological mechanisms across four COPD gene-expression datasets: two sets of lung tissues (L1 n = 70; L2 n = 124), and one each of induced sputum (S; n = 121) and peripheral blood (B; n = 121). RESULTS: WGCNA analysis identified twenty-one gene co-expression modules in L1. A robust module preservation between the two L datasets was observed (86%), with less preservation in S (33%) and even less in B (23%). Three modules preserved across lung tissues and sputum (not blood) were associated with the severity of airflow limitation. Ontology enrichment analysis showed that these modules included genes related to mitochondrial function, ion-homeostasis, T cells and RNA processing. These findings were largely reproduced using the consensus WGCNA network approach. CONCLUSIONS: These observations indicate that major differences in lung tissue transcriptomics in patients with COPD are poorly mirrored in sputum and are unrelated to those determined in blood, suggesting that the systemic component in COPD is independently regulated. Finally, the fact that one of the preserved modules associated with FEV1 was enriched in mitochondria-related genes supports a role for mitochondrial dysfunction in the pathobiology of COPD

    Methods to study splicing from high-throughput RNA Sequencing data

    Full text link
    The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the complexity of the information to be analyzed has turned this into a challenging task. In the last few years, a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expression of isoforms and splicing events, and their relative changes under different conditions. We provide an overview of the methods available to study splicing from short RNA-Seq data. We group the methods according to the different questions they address: 1) Assignment of the sequencing reads to their likely gene of origin. This is addressed by methods that map reads to the genome and/or to the available gene annotations. 2) Recovering the sequence of splicing events and isoforms. This is addressed by transcript reconstruction and de novo assembly methods. 3) Quantification of events and isoforms. Either after reconstructing transcripts or using an annotation, many methods estimate the expression level or the relative usage of isoforms and/or events. 4) Providing an isoform or event view of differential splicing or expression. These include methods that compare relative event/isoform abundance or isoform expression across two or more conditions. 5) Visualizing splicing regulation. Various tools facilitate the visualization of the RNA-Seq data in the context of alternative splicing. In this review, we do not describe the specific mathematical models behind each method. Our aim is rather to provide an overview that could serve as an entry point for users who need to decide on a suitable tool for a specific analysis. We also attempt to propose a classification of the tools according to the operations they do, to facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde

    Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms

    Get PDF
    Purpose Fabrication of a suitable flow model or phantom is critical to the study of biomedical fluid dynamics using optical flow visualization and measurement methods. The main difficulties arise from the optical properties of the model material, accuracy of the geometry and ease of fabrication. Methods Conventionally an investment casting method has been used, but recently advancements in additive manufacturing techniques such as 3D printing have allowed the flow model to be printed directly with minimal post-processing steps. This study presents results of an investigation into the feasibility of fabrication of such models suitable for particle image velocimetry (PIV) using a common 3D printing Stereolithography process and photopolymer resin. Results An idealised geometry of a cerebral aneurysm was printed to demonstrate its applicability for PIV experimentation. The material was shown to have a refractive index of 1.51, which can be refractive matched with a mixture of de-ionised water with ammonium thiocyanate (NH4SCN). The images were of a quality that after applying common PIV pre-processing techniques and a PIV cross-correlation algorithm, the results produced were consistent within the aneurysm when compared to previous studies. Conclusions This study presents an alternative low-cost option for 3D printing of a flow phantom suitable for flow visualization simulations. The use of 3D printed flow phantoms reduces the complexity, time and effort required compared to conventional investment casting methods by removing the necessity of a multi-part process required with investment casting techniques

    COOL-LAMPS III: Discovery of a 25".9 Separation Quasar Lensed by a Merging Galaxy Cluster

    Get PDF
    In the third paper from the COOL-LAMPS Collaboration, we report the discovery of COOL J0542-2125, a gravitationally lensed quasar at z=1.84z=1.84, observed as three images due to an intervening massive galaxy cluster at z=0.61z=0.61. The lensed quasar images were identified in a search for lens systems in recent public optical imaging data and have separations on the sky up to 25".9, wider than any previously known lensed quasar. The galaxy cluster acting as a strong lens appears to be in the process of merging, with two sub-clusters separated by 1\sim 1 Mpc in the plane of the sky, and their central galaxies showing a radial velocity difference of 1000\sim 1000 km/s. Both cluster cores show strongly lensed images of an assortment of background sources, as does the region between them. A preliminary strong lens model implies masses of $M(<250\ \rm{kpc}) = 1.79^{+0.16} _{-0.01} \times 10^{14} M_{\odot}and and M(<250\ \rm{kpc}) = 1.48^{+0.04}_{-0.10} \times 10^{14} M_{\odot}$ for the East and West sub-clusters, respectively. This line of sight is also coincident with a ROSAT ALL-sky Survey source, centered between the two confirmed cluster halos reminiscent of other major cluster-scale mergers.Comment: 13 pages, 6 figures. Submitted to Ap

    Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching

    Get PDF
    Template switching (TS) has been an inherent mechanism of reverse transcriptase, which has been exploited in several transcriptome analysis methods, such as CAGE, RNA-Seq and short RNA sequencing. TS is an attractive option, given the simplicity of the protocol, which does not require an adaptor mediated step and thus minimizes sample loss. As such, it has been used in several studies that deal with limited amounts of RNA, such as in single cell studies. Additionally, TS has also been used to introduce DNA barcodes or indexes into different samples, cells or molecules. This labeling allows one to pool several samples into one sequencing flow cell, increasing the data throughput of sequencing and takes advantage of the increasing throughput of current sequences. Here, we report TS artifacts that form owing to a process called strand invasion. Due to the way in which barcodes/indexes are introduced by TS, strand invasion becomes more problematic by introducing unsystematic biases. We describe a strategy that eliminates these artifacts in silico and propose an experimental solution that suppresses biases from TS

    Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke.

    Full text link
    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. METHODS: We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. RESULTS: There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p < 5 × 10(-6)) from community populations (15 single nucleotide polymorphisms in total) and from stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are novel associations at the genome-wide level (rs72934505 [NBEAL1], p = 2.2 × 10(-8); rs941898 [EVL], p = 4.0 × 10(-8); rs962888 [C1QL1], p = 1.1 × 10(-8); rs9515201 [COL4A2], p = 6.9 × 10(-9)). CONCLUSIONS: Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease

    Genetic studies of hypertrophic cardiomyopathy in Singaporeans identify variants in TNNI3 and TNNT2 that are common in Chinese patients

    Get PDF
    Background - To assess the genetic architecture of hypertrophic cardiomyopathy (HCM) in patients of predominantly Chinese ancestry. Methods - We sequenced HCM disease genes in Singaporean patients (n=224) and Singaporean controls (n=3,634), compared findings with additional populations and Caucasian HCM cohorts (n=6,179) and performed in vitro functional studies. Results - Singaporean HCM patients had significantly fewer confidently interpreted HCM disease variants (Pathogenic (P)/Likely Pathogenic (LP):18%, p<0.0001) but an excess of variants of unknown significance (exVUS: 24%, p<0.0001), as compared to Caucasians (P/LP: 31%, exVUS: 7%). Two missense variants in thin filament encoding genes were commonly seen in Singaporean HCM (TNNI3:p.R79C, disease allele frequency (AF)=0.018; TNNT2:p.R286H, disease AF=0.022) and are enriched in Singaporean HCM when compared with Asian controls (TNNI3:p.R79C, Singaporean controls AF=0.0055, p=0.0057, gnomAD-East Asian (gnomAD-EA) AF=0.0062, p=0.0086; TNNT2:p.R286H, Singaporean controls AF=0.0017, p<0.0001, gnomAD-EA AF=0.0009, p<0.0001). Both these variants have conflicting annotations in ClinVar and are of low penetrance (TNNI3:p.R79C, 0.7%; TNNT2:p.R286H, 2.7%) but are predicted to be deleterious by computational tools. In population controls, TNNI3:p.R79C carriers had significantly thicker left ventricular walls compared to non-carriers while its etiological fraction is limited (0.70, 95% CI: 0.35-0.86) and thus TNNI3:p.R79C is considered a VUS. Mutant TNNT2:p.R286H iPSC-CMs show hypercontractility, increased metabolic requirements and cellular hypertrophy and the etiological fraction (0.93, 95% CI: 0.83-0.97) support the likely pathogenicity of TNNT2:p.R286H. Conclusions - As compared to Caucasians, Chinese HCM patients commonly have low penetrance risk alleles in TNNT2 or TNNI3 but exhibit few clinically actionable HCM variants overall. This highlights the need for greater study of HCM genetics in non-Caucasian populations

    Automated Workflow for Preparation of cDNA for Cap Analysis of Gene Expression on a Single Molecule Sequencer

    Get PDF
    Background: Cap analysis of gene expression (CAGE) is a 59 sequence tag technology to globally determine transcriptional starting sites in the genome and their expression levels and has most recently been adapted to the HeliScope single molecule sequencer. Despite significant simplifications in the CAGE protocol, it has until now been a labour intensive protocol. Methodology: In this study we set out to adapt the protocol to a robotic workflow, which would increase throughput and reduce handling. The automated CAGE cDNA preparation system we present here can prepare 96 ‘HeliScope ready ’ CAGE cDNA libraries in 8 days, as opposed to 6 weeks by a manual operator.We compare the results obtained using the same RNA in manual libraries and across multiple automation batches to assess reproducibility. Conclusions: We show that the sequencing was highly reproducible and comparable to manual libraries with an 8 fold increase in productivity. The automated CAGE cDNA preparation system can prepare 96 CAGE sequencing samples simultaneously. Finally we discuss how the system could be used for CAGE on Illumina/SOLiD platforms, RNA-seq and fulllengt
    corecore