18 research outputs found

    Accuracy Assessment of Global Internal-Tide Models Using Satellite Altimetry

    Get PDF
    Altimeter measurements are corrected for several geophysical parameters in order to access ocean signals of interest, like mesoscale or sub-mesoscale variability. The ocean tide is one of the most critical corrections due to the amplitude of the tidal elevations and to the aliasing phenomena of high-frequency signals into the lower-frequency band, but the internal-tide signatures at the ocean surface are not yet corrected globally. Internal tides can have a signature of several centimeters at the surface with wavelengths of about 50–250 km for the first mode and even smaller scales for higher-order modes. The goals of the upcoming Surface Water Ocean Topography (SWOT) mission and other high-resolution ocean measurements make the correction of these small-scale signals a challenge, as the correction of all tidal variability becomes mandatory to access accurate measurements of other oceanic signals. In this context, several scientific teams are working on the development of new internal-tide models, taking advantage of the very long altimeter time series now available, which represent an unprecedented and valuable global ocean database. The internal-tide models presented here focus on the coherent internal-tide signal and they are of three types: empirical models based upon analysis of existing altimeter missions, an assimilative model and a three-dimensional hydrodynamic model. A detailed comparison and validation of these internal-tide models is proposed using existing satellite altimeter databases. The analysis focuses on the four main tidal constituents: M2, K1, O1 and S2. The validation process is based on a statistical analysis of multi-mission altimetry including Jason-2 and Cryosphere Satellite-2 data. The results show a significant altimeter variance reduction when using internal-tide corrections in all ocean regions where internal tides are generating or propagating. A complementary spectral analysis also gives some estimation of the performance of each model as a function of wavelength and some insight into the residual non-stationary part of internal tides in the different regions of interest. This work led to the implementation of a new internal-tide correction (ZARON\u27one) in the next geophysical data records version-F (GDR-F) standards

    The impact of simulated total surface current velocity observations on operational ocean forecasting and requirements for future satellite missions

    Get PDF
    Operational forecasts rely on accurate and timely observations and it is important that the ocean forecasting community demonstrates the impact of those observations to the observing community and its funders while providing feedback on requirements for the design of the ocean observing system. One way in which impact of new observations can be assessed is through Observing System Simulation Experiments (OSSEs). Various satellite missions are being proposed to measure Total Surface Current Velocities (TSCV). This study uses OSSEs to assess the potential impact of assimilating TSCV observations. OSSEs have been performed using two global ocean forecasting systems; the Met Office’s (MetO) Forecasting Ocean Assimilation Model and the Mercator Ocean International (MOI) system. Developments to the individual systems, the design of the experiments and results have been described in two companion papers. This paper provides an intercomparison of the OSSEs results from the two systems. We show that global near surface velocity analysis root-mean-squared-errors (RMSE) are reduced by 20-30% and 10-15% in the MetO and MOI systems respectively, we also demonstrate that the percentage of particles forecast to be within 50 km of the true particle locations after drifting for 6 days has increased by 9%/7%. Furthermore, we show that the global subsurface velocities are improved down to 1500m in the MetO system and down to 400m in the MOI system. There are some regions where TSCV assimilation degrades the results, notably the middle of the gyres in the MetO system and at depth in the MOI system. Further tuning of the background and observation error covariances are required to improve performance in these regions. We also provide some recommendations on TSCV observation requirements for future satellite missions. We recommend that at least 80% of the ocean surface is observed in less than 4 to 5 days with a horizontal resolution of 20 to 50 km. Observations should be provided within one day of measurement time to allow real time assimilation and should have an accuracy of 10 cm/s in the along and across track direction and uncertainty estimates should be provided with each measurement

    Global Observations of Fine-Scale Ocean Surface Topography With the Surface Water and Ocean Topography (SWOT) Mission

    Get PDF
    The future international Surface Water and Ocean Topography (SWOT) Mission, planned for launch in 2021, will make high-resolution 2D observations of sea-surface height using SAR radar interferometric techniques. SWOT will map the global and coastal oceans up to 77.6 latitude every 21 days over a swath of 120 km (20 km nadir gap). Today’s 2D mapped altimeter data can resolve ocean scales of 150 km wavelength whereas the SWOT measurement will extend our 2D observations down to 15–30 km, depending on sea state. SWOT will offer new opportunities to observe the oceanic dynamic processes at scales that are important in the generation and dissipation of kinetic energy in the ocean, and that facilitate the exchange of energy between the ocean interior and the upper layer. The active vertical exchanges linked to these scales have impacts on the local and global budgets of heat and carbon, and on nutrients for biogeochemical cycles. This review paper highlights the issues being addressed by the SWOT science community to understand SWOT’s very precise sea surface height (SSH)/surface pressure observations, and it explores how SWOT data will be combined with other satellite and in situ data and models to better understand the upper ocean 4D circulation (x, y, z, t) over the next decade. SWOT will provide unprecedented 2D ocean SSH observations down to 15–30 km in wavelength, which encompasses the scales of “balanced” geostrophic eddy motions, high-frequency internal tides and internal waves. Frontiers in Marine Science | www.frontiersin.org 1 May 2019 | Volume 6 | Article 232 Morrow et al. SWOT Fine-Scale Global Ocean Topography This presents both a challenge in reconstructing the 4D upper ocean circulation, or in the assimilation of SSH in models, but also an opportunity to have global observations of the 2D structure of these phenomena, and to learn more about their interactions. At these small scales, ocean dynamics evolve rapidly, and combining SWOT 2D SSH data with other satellite or in situ data with different space-time coverage is also a challenge. SWOT’s new technology will be a forerunner for the future altimetric observing system, and so advancing on these issues today will pave the way for our future

    Measuring currents, ice drift, and waves from space: the Sea Surface KInematics Multiscale monitoring (SKIM) concept

    Get PDF
    We propose a new satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40?km and more, with snapshots at least every day for latitudes 75 to 82, and every few days otherwise. The use of incidence angles at 6 and 12 degrees allows a measurement of the directional wave spectrum which yields accurate corrections of the wave-induced bias in the current measurements. The instrument principle, algorithm for current velocity and mission performance are presented here. The proposed instrument can reveal features on tropical ocean and marginal ice zone dynamics that are inaccessible to other measurement systems, as well as a global monitoring of the ocean mesoscale that surpasses the capability of today?s nadir altimeters. Measuring ocean wave properties facilitates many applications, from wave-current interactions and air-sea fluxes to the transport and convergence of marine plastic debris and assessment of marine and coastal hazards

    SKIM, a candidate satellite mission exploring global ocean currents and waves

    Get PDF
    The Sea surface KInematics Multiscale monitoring (SKIM) satellite mission is designed to explore ocean surface current and waves. This includes tropical currents, notably the poorly known patterns of divergence and their impact on the ocean heat budget, and monitoring of the emerging Arctic up to 82.5°N. SKIM will also make unprecedented direct measurements of strong currents, from boundary currents to the Antarctic circumpolar current, and their interaction with ocean waves with expected impacts on air-sea fluxes and extreme waves. For the first time, SKIM will directly measure the ocean surface current vector from space. The main instrument on SKIM is a Ka-band conically scanning, multi-beam Doppler radar altimeter/wave scatterometer that includes a state-of-the-art nadir beam comparable to the Poseidon-4 instrument on Sentinel 6. The well proven Doppler pulse-pair technique will give a surface drift velocity representative of the top meter of the ocean, after subtracting a large wave-induced contribution. Horizontal velocity components will be obtained with an accuracy better than 7 cm/s for horizontal wavelengths larger than 80 km and time resolutions larger than 15 days, with a mean revisit time of 4 days for of 99% of the global oceans. This will provide unique and innovative measurements that will further our understanding of the transports in the upper ocean layer, permanently distributing heat, carbon, plankton, and plastics. SKIM will also benefit from co-located measurements of water vapor, rain rate, sea ice concentration, and wind vectors provided by the European operational satellite MetOp-SG(B), allowing many joint analyses. SKIM is one of the two candidate satellite missions under development for ESA Earth Explorer 9. The other candidate is the Far infrared Radiation Understanding and Monitoring (FORUM). The final selection will be announced by September 2019, for a launch in the coming decade

    Investigating the Performance of Four Empirical Cross-Calibration Methods for the Proposed SWOT Mission

    No full text
    The proposed surface water and ocean topography (SWOT) mission aims at observing short scale ocean topography with an unprecedented resolution and accuracy. Its main proposed sensor is a radar interferometer, so a major source of topography error is the roll angle: the relative positions of SWOT’s antennas must be known within a few micrometers. Because reaching SWOT’s stringent requirements with onboard roll values is challenging, we carried out simulations as a contingency strategy (i.e., to be ready if roll is larger than anticipated) that could be used with ground-based data. We revisit the empirical calibration algorithms with additional solving methods (e.g., based on orbit sub-cycle) and more sophisticated performance assessments with spectral decompositions. We also explore the link between the performance of four calibration methods and the attributes of their respective calibration zones: size and geometry (e.g., crossover diamonds), temporal variability (e.g., how many days between overlapping SWOT images). In general, the so-called direct method (using a single SWOT image) yields better coverage and smaller calibrated roll residuals because the full extent of the swath can be used for calibration, but this method makes an extensive use of the external nadir constellation to separate roll from oceanic variability, and it is more prone to leakages from oceanic variability on roll (i.e., true topography signal is more likely to be corrupted if it is misinterpreted as roll) and inaccurate modeling of the true topography spectrum. For SWOT’s baseline orbit (21 days repeat and 10.9 days sub-cycle), three other methods are found to be complementary with the direct method: swath crossovers, external nadir crossovers, and sub-cycle overlaps are shown to provide an additional calibration capability, albeit with complex latitude-varying coverage and performance. The main asset of using three or four methods concurrently is to minimize systematic leakages from oceanic variability or measurement errors, by maximizing overlap zones and by minimizing the temporal variability with one-day to three-day image differences. To that extent, SWOT’s proposed “contingency orbit” is an attractive risk reduction asset: the one-day sub-cycle overlaps of adjoining swaths would provide a good, continuous, and self-sufficient (no need for external nadirs) calibration scheme. The benefit is however essentially located at mid to high-latitudes and it is substantial only for wavelengths longer than 100 km

    Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping

    No full text
    Many issues may challenge standard interpolation techniques to produce high-resolution gridded maps of sea surface height in the context of future missions like Surface Water and Ocean Topography (SWOT). The present study proposes a new method to address these challenges. Based on the conservation of potential vorticity, the method provides a simple dynamic approach to interpolation through temporal gaps between high spatial resolution observations. For gaps shorter than 20 days, the dynamic interpolation is extremely efficient and allows for the reconstruction of the time evolution of small mesoscale eddies (below 100 km) that would be smoothed out by conventional methods based on optimal mapping. Such a simple approach offers some perspectives for developing high-level products from high-resolution altimetry data in the future

    Reconstructability of 3-Dimensional Upper Ocean Circulation from SWOT Sea Surface Height Measurements

    No full text
    Utilizing the framework of effective surface quasi-geostrophic (eSQG) theory, we explored the potential of reconstructing the 3D upper ocean circulation structures, including the balanced vertical velocity (w) field, from high-resolution sea surface height (SSH) data of the planned SWOT satellite mission. Specifically, we utilized the 1/30°, submesoscale-resolving, OFES model output and subjected it through the SWOT simulator that generates the along-swath SSH data with expected measurement errors. Focusing on the Kuroshio Extension region in the North Pacific where regional Rossby numbers range from 0.22 to 0.32, we found that the eSQG dynamics constitutes an effective framework for reconstructing the 3D upper ocean circulation field. Using the modeled SSH data as input, the eSQG-reconstructed relative vorticity (ζ) and w fields are found to reach a correlation of 0.7–0.9 and 0.6–0.7, respectively, in the 1,000m upper ocean when compared to the original model output. Degradation due to the SWOT sampling and measurement errors in the input SSH data for the ζ and w reconstructions is found to be moderate, 5–25% for the 3D ζ field and 15-35% for the 3D w field. There exists a tendency for this degradation ratio to decrease in regions where the regional eddy variability (or Rossby number) increases
    corecore