19,779 research outputs found

    Thermodynamic properties of Pb determined from pressure-dependent critical-field measurements

    Full text link
    We have carried out extensive low-temperature (1.5 to 10 K) measurements of the critical field, HcH_c, for the element Pb up to a pressure of P=1.2P=1.2 GPa. From this data the electronic entropy, specific heat, thermal expansion coefficient and compressibility is calculated as a function of temperature, pressure and magnetic field. The zero-field data is consistent with direct thermodynamic measurements and the PP-dependence of TcT_c and specific heat coefficient, γ(T,P)\gamma(T,P) allows the determination of the PP-dependence of the pairing interaction.Comment: 5 pages, 6 figures, in press Phys. Rev.

    Skolestatistik

    Get PDF

    Tridiagonal test matrices for eigenvalue computations : two-parameter extensions of the Clement matrix

    Get PDF
    The Clement or Sylvester-Kac matrix is a tridiagonal matrix with zero diagonal and simple integer entries. Its spectrum is known explicitly and consists of integers which makes it a useful test matrix for numerical eigenvalue computations. We consider a new class of appealing two-parameter extensions of this matrix which have the same simple structure and whose eigenvalues are also given explicitly by a simple closed form expression. The aim of this paper is to present in an accessible form these new matrices and examine some numerical results regarding the use of these extensions as test matrices for numerical eigenvalue computations.Comment: This is a preprint of a paper whose final and definite form is in Journal of Computational and Applied Mathematic

    Modeling long term Enhanced in situ Biodenitrification and induced heterogeneity in column experiments under different feeding strategies

    Get PDF
    Enhanced In situ Biodenitrification (EIB) is a capable technology for nitrate removal in subsurface water resources. Optimizing the performance of EIB implies devising an appropriate feeding strategy involving two design parameters: carbon injection frequency and C:N ratio of the organic substrate nitrate mixture. Here we model data on the spatial and temporal evolution of nitrate (up to 1.2 mM), organic carbon (ethanol), and biomass measured during a 342 day-long laboratory column experiment (published in Vidal-Gavilan et al., 2014). Effective porosity was 3% lower and dispersivity had a sevenfold increase at the end of the experiment as compared to those at the beginning. These changes in transport parameters were attributed to the development of a biofilm. A reactive transport model explored the EIB performance in response to daily and weekly feeding strategies. The latter resulted in significant temporal variation in nitrate and ethanol concentrations at the outlet of the column. On the contrary, a daily feeding strategy resulted in quite stable and low concentrations at the outlet and complete denitrification. At intermediate times (six months of experiment), it was possible to reduce the carbon load and consequently the C:N ratio (from 2.5 to 1), partly because biomass decay acted as endogenous carbon to respiration, keeping the denitrification rates, and partly due to the induced dispersivity caused by the well developed biofilm, resulting in enhancement of mixing between the ethanol and nitrate and the corresponding improvement of denitrification rates. The inclusion of a dual-domain model improved the fit at the last days of the experiment as well as in the tracer test performed at day 342, demonstrating a potential transition to anomalous transport that may be caused by the development of biofilm. This modeling work is a step forward to devising optimal injection conditions and substrate rates to enhance EIB performance by minimizing the overall supply of electron donor, and thus the cost of the remediation strategy.Peer ReviewedPostprint (author's final draft

    Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods

    Get PDF
    The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances its potential nutritional and organoleptic acceptability as a diet component in a Controlled Ecological Life Support System

    Comment on the Calculation of the Angular Momentum and Mass for the (Anti-) Self Dual Charged Spinning BTZBTZ Black Hole

    Full text link
    A recent paper [M. Kamata and T. Koikawa, Phys. Lett. {\bf B353} (1995) 196.] claimed to obtain the charged version of the (2+1)(2+1)-dimensional spinning BTZBTZ black hole solution by assuming a (anti-) self dual condition imposed on the electric and magnetic fields. We point out that the angular momentum and mass diverge at spatial infinity and as a consequence the solution is unphysicalComment: 4 pages, Latex, no figures, final version to be publised in Phys. Lett.

    Microfocal X-Ray Computed Tomography Post-Processing Operations for Optimizing Reconstruction Volumes of Stented Arteries During 3D Computational Fluid Dynamics Modeling

    Get PDF
    Restenosis caused by neointimal hyperplasia (NH) remains an important clinical problem after stent implantation. Restenosis varies with stent geometry, and idealized computational fluid dynamics (CFD) models have indicated that geometric properties of the implanted stent may differentially influence NH. However, 3D studies capturing the in vivo flow domain within stented vessels have not been conducted at a resolution sufficient to detect subtle alterations in vascular geometry caused by the stent and the subsequent temporal development of NH. We present the details and limitations of a series of post-processing operations used in conjunction with microfocal X-ray CT imaging and reconstruction to generate geometrically accurate flow domains within the localized region of a stent several weeks after implantation. Microfocal X-ray CT reconstruction volumes were subjected to an automated program to perform arterial thresholding, spatial orientation, and surface smoothing of stented and unstented rabbit iliac arteries several weeks after antegrade implantation. A transfer function was obtained for the current post-processing methodology containing reconstructed 16 mm stents implanted into rabbit iliac arteries for up to 21 days after implantation and resolved at circumferential and axial resolutions of 32 and 50 μm, respectively. The results indicate that the techniques presented are sufficient to resolve distributions of WSS with 80% accuracy in segments containing 16 surface perturbations over a 16 mm stented region. These methods will be used to test the hypothesis that reductions in normalized wall shear stress (WSS) and increases in the spatial disparity of WSS immediately after stent implantation may spatially correlate with the temporal development of NH within the stented region

    Janssen effect and the stability of quasi 2-D sandpiles

    Full text link
    We present the results of three dimensional molecular dynamics study of global normal stresses in quasi two dimensional sandpiles formed by pouring mono dispersed cohesionless spherical grains into a vertical granular Hele-Shaw cell. We observe Janssen effect which is the phenomenon of pressure saturation at the bottom of the container. Simulation of cells with different thicknesses shows that the Janssen coefficient κ\kappa is a function of the cell thickness. Dependence of global normal stresses as well as κ\kappa on the friction coefficients between the grains (μp\mu_p) and with walls (μw\mu_w) are also studied. The results show that in the range of our simulations κ\kappa usually increases with wall-grain friction coefficient. Meanwhile by increasing μp\mu_p while the other system parameters are fixed, we witness a gradual increase in κ\kappa to a parameter dependent maximal value
    corecore