2,105 research outputs found

    A common polymorphism in SNCA is associated with accelerated motor decline in GBA-Parkinson's disease.

    Get PDF
    A growing number of genetic susceptibility factors have been identified for Parkinson’s disease (PD). The combination of inherited risk variants is likely to affect not only risk of developing PD but also its clinical course. Variants in the GBA gene are particularly common, being found in approximately 5 to 10% of patients, and they lead to more rapid disease progression1. However, the effect of concomitant genetic risk factors on disease course in GBA-PD is not known.The CamPaIGN study has received financial support from the Wellcome Trust, the Medical Research Council, Parkinson’s UK and the Patrick Berthoud Trust. CHWG is supported by an RCUK/UKRI Innovation Fellowship awarded by the Medical Research Council. RAB is supported by the Wellcome Trust Stem Cell Institute (Cambridge). TBS received financial support from the Cure Parkinson’s Trust. The study is also supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre Dementia and Neurodegeneration Theme (reference number 146281). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. CRS' work is supported in part by NIH grants R01AG057331, U01NS100603, R01AG057331, and the American Parkinson Disease Association. Illumina MEGA Chip genotyping was made possible by a philanthropic investment from Dooley LLC (to Brigham & Women's Hospital and CRS)

    12.グルタミン酸ナトリウムはglucagon like peptide-1の食後早期の分泌を促進し, 食後血糖の上昇を抑制する

    Get PDF
    The purpose of this study was to compare the growth and nutritional status of infants fed different diets, some of whom received a low-fat formula. Beginning at four to six months of age, 101 infants were fed whole cow\u27s milk, one of two low-fat follow-up formulas, or a standard infant formula until 12 months of age. Weight, recumbent length, and head circumference were measured at one-month intervals. Analyses of status (values at an age) for all examinations showed no significant differences among the feeding groups in status for weight or recumbent length, but there were significant differences in head circumference for boys and for girls after adjustments for the initial values. Head circumferences were smaller in those fed whole cow\u27s milk and relatively large in those fed follow-up formula, but these differences were small and not of clinical significance. Comparisons with national reference data showed growth in weight, recumbent length, and head circumference was normal regardless of feeding group. These results indicate that, during the second half year of infancy, the use of lower fat concentrations in the follow-up formulas did not retard growth in weight, recumbent length, or head circumference

    ¹H NMR based metabolomics of CSF and blood serum: a metabolic profile for a transgenic rat model of Huntington disease

    Get PDF
    AbstractHuntington disease (HD) is a hereditary brain disease. Although the causative gene has been found, the exact mechanisms of the pathogenesis are still unknown. Recent investigations point to metabolic and energetic dysfunctions in HD neurons.Both univariate and multivariate analyses were used to compare proton nuclear magnetic resonance spectra of serum and cerebrospinal fluid (CSF) taken from presymptomatic HD transgenic rats and their wild-type littermates. N-acetylaspartate (NAA), was found to be significantly decreased in the serum of HD rats compared to wild-type littermates. Moreover, in the serum their levels of glutamine, succinic acid, glucose and lactate are significantly increased as well. An increased concentration of lactate and glucose is also found in CSF. There is a 1:1 stoichiometry coupling glucose utilization and glutamate cycling. The observed increase in the glutamine concentration, which indicates a shutdown in the neuronal-glial glutamate-glutamine cycling, results therefore in an increased glucose concentration. The elevated succinic acid concentration might be due to an inhibition of succinate dehydrogenase, an enzyme linked to the mitochondrial respiratory chain and TCA cycle. Moreover, reduced levels of NAA may reflect an impairment of mitochondrial energy production. In addition, the observed difference in lactate supports a deficiency of oxidative energy metabolism in rats transgenic for HD as well.The observed metabolic alterations seem to be more profound in serum than in CSF in presymptomatic rats. All findings suggest that even in presymptomatic rats, a defect in energy metabolism is already apparent. These results support the hypothesis of mitochondrial energy dysfunction in HD

    Impact of GBA1 variants on long-term clinical progression and mortality in incident Parkinson’s disease

    Get PDF
    Funder: Foundation for the National Institutes of Health; FundRef: http://dx.doi.org/10.13039/100000009Funder: Van Geest FoundationFunder: Patrick Berthoud Charitable Trust; FundRef: http://dx.doi.org/10.13039/501100004218Funder: Cure Parkinson's TrustFunder: Michael J Fox FoundationFunder: Innovate UK; FundRef: http://dx.doi.org/10.13039/501100006041Funder: Dooley LLCFunder: American Parkinson's disease associationFunder: Medical Research Council; FundRef: http://dx.doi.org/10.13039/501100000265Funder: Cambridge Centre for Parkinson-PlusFunder: Parkinson's UK; FundRef: http://dx.doi.org/10.13039/501100000304Funder: John Black charitable foundationFunder: Wellcome Trust; FundRef: http://dx.doi.org/10.13039/100004440Funder: National Institute for Health Research; FundRef: http://dx.doi.org/10.13039/501100000272Funder: Van Andel Research Institute; FundRef: http://dx.doi.org/10.13039/100006019Introduction: Variants in the GBA1 gene have been identified as a common risk factor for Parkinson’s disease (PD). In addition to pathogenic mutations (those associated with Gaucher disease), a number of ‘non-pathogenic’ variants also occur at increased frequency in PD. Previous studies have reported that pathogenic variants adversely affect the clinical course of PD. The role of ‘non-pathogenic’ GBA1 variants on PD course is less clear. In this study, we report the effect of GBA1 variants in incident PD patients with long-term follow-up. Methods: The study population consisted of patients in the Cambridgeshire Incidence of Parkinson’s disease from General Practice to Neurologist and Parkinsonism: Incidence, Cognition and Non-motor heterogeneity in Cambridgeshire cohorts. Patients were grouped into non-carriers, carriers of ‘non-pathogenic’ GBA1 variants and carriers of pathogenic GBA1 mutations. Survival analyses for time to development of dementia, postural instability and death were carried out. Cox regression analysis controlling for potential confounders were used to determine the impact of GBA1 variants on these outcome measures. Results: GBA1 variants were identified in 14.4% of patients. Pathogenic and ‘non-pathogenic’ GBA1 variants were associated with the accelerated development of dementia and a more aggressive motor course. Pathogenic GBA1 variants were associated with earlier mortality in comparison with non-carriers, independent of the development of dementia. Discussion: GBA1 variants, including those not associated with Gaucher disease, are common in PD and result in a more aggressive disease course

    Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program

    Get PDF
    Biomarkers for Parkinson's disease (PD) diagnosis, prognostication and clinical trial cohort selection are an urgent need. While many promising markers have been discovered through the National Institute of Neurological Disorders and Stroke Parkinson's Disease Biomarker Program (PDBP) and other mechanisms, no single PD marker or set of markers are ready for clinical use. Here we discuss the current state of biomarker discovery for platforms relevant to PDBP. We discuss the role of the PDBP in PD biomarker identification and present guidelines to facilitate their development. These guidelines include: harmonizing procedures for biofluid acquisition and clinical assessments, replication of the most promising biomarkers, support and encouragement of publications that report negative findings, longitudinal follow-up of current cohorts including the PDBP, testing of wearable technologies to capture readouts between study visits and development of recently diagnosed (de novo) cohorts to foster identification of the earliest markers of disease onset

    Glucosylceramide synthase inhibitors induce ceramide accumulation and sensitize H3K27 mutant diffuse midline glioma to irradiation

    Get PDF
    H3K27M mutant (mut) diffuse midline glioma (DMG) is a lethal cancer with no effective cure. The glycosphingolipids (GSL) metabolism is altered in these tumors and could be exploited to develop new therapies. We tested the effect of the glucosylceramide synthase inhibitors (GSI) miglustat and eliglustat on cell proliferation, alone or in combination with temozolomide or ionizing radiation. Miglustat was included in the therapy protocol of two pediatric patients. The effect of H3.3K27 trimethylation on GSL composition was analyzed in ependymoma. GSI reduced the expression of the ganglioside GD2 in a concentration and time-dependent manner and increased the expression of ceramide, ceramide 1-phosphate, sphingosine, and sphingomyelin but not of sphingosine 1-phosphate. Miglustat significantly increased the efficacy of irradiation. Treatment with miglustat according to dose recommendations for patients with Niemann–Pick disease was well tolerated with manageable toxicities. One patient showed a mixed response. In ependymoma, a high concentration of GD2 was found only in the presence of the loss of H3.3K27 trimethylation. In conclusion, treatment with miglustat and, in general, targeting GSL metabolism may offer a new therapeutic opportunity and can be administered in close proximity to radiation therapy. Alterations in H3K27 could be useful to identify patients with a deregulated GSL metabolism

    Training of Instrumentalists and Development of New Technologies on SOFIA

    Full text link
    This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal Survey (Astro2010)1 Committee on the State of the Profession to emphasize the potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to contribute to the training of instrumentalists and observers, and to related technology developments. This potential goes beyond the primary mission of SOFIA, which is to carry out unique, high priority astronomical research. SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable astronomical observations anywhere, any time, and at most wavelengths between 0.3 microns and 1.6 mm not accessible from ground-based observatories. These attributes, accruing from the mobility and flight altitude of SOFIA, guarantee a wealth of scientific return. Its instrument teams (nine in the first generation) and guest investigators will do suborbital astronomy in a shirt-sleeve environment. The project will invest $10M per year in science instrument development over a lifetime of 20 years. This, frequent flight opportunities, and operation that enables rapid changes of science instruments and hands-on in-flight access to the instruments, assure a unique and extensive potential - both for training young instrumentalists and for encouraging and deploying nascent technologies. Novel instruments covering optical, infrared, and submillimeter bands can be developed for and tested on SOFIA by their developers (including apprentices) for their own observations and for those of guest observers, to validate technologies and maximize observational effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on State of the Professio

    The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network

    Get PDF
    Background: Ipilimumab, a cytotoxic T-lymphocyte antigen-4 (CTLA-4) blocking antibody, has been approved for the treatment of metastatic melanoma and induces adverse events (AE) in up to 64% of patients. Treatment algorithms for the management of common ipilimumab-induced AEs have lead to a reduction of morbidity, e.g. due to bowel perforations. However, the spectrum of less common AEs is expanding as ipilimumab is increasingly applied. Stringent recognition and management of AEs will reduce drug-induced morbidity and costs, and thus, positively impact the cost-benefit ratio of the drug. To facilitate timely identification and adequate management data on rare AEs were analyzed at 19 skin cancer centers. Methods and Findings: Patient files (n = 752) were screened for rare ipilimumab-associated AEs. A total of 120 AEs, some of which were life-threatening or even fatal, were reported and summarized by organ system describing the most instructive cases in detail. Previously unreported AEs like drug rash with eosinophilia and systemic symptoms (DRESS), granulomatous inflammation of the central nervous system, and aseptic meningitis, were documented. Obstacles included patientś delay in reporting symptoms and the differentiation of steroid-induced from ipilimumab-induced AEs under steroid treatment. Importantly, response rate was high in this patient population with tumor regression in 30.9% and a tumor control rate of 61.8% in stage IV melanoma patients despite the fact that some patients received only two of four recommended ipilimumab infusions. This suggests that ipilimumab-induced antitumor responses can have an early onset and that severe autoimmune reactions may reflect overtreatment. Conclusion: The wide spectrum of ipilimumab-induced AEs demands doctor and patient awareness to reduce morbidity and treatment costs and true ipilimumab success is dictated by both objective tumor responses and controlling severe side effects

    Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's.

    Get PDF
    OBJECTIVE: We hypothesized that specific mutations in the β-glucocerebrosidase gene (GBA) causing neuropathic Gaucher's disease (GD) in homozygotes lead to aggressive cognitive decline in heterozygous Parkinson's disease (PD) patients, whereas non-neuropathic GD mutations confer intermediate progression rates. METHODS: A total of 2,304 patients with PD and 20,868 longitudinal visits for up to 12.8 years (median, 4.1) from seven cohorts were analyzed. Differential effects of four types of genetic variation in GBA on longitudinal cognitive decline were evaluated using mixed random and fixed effects and Cox proportional hazards models. RESULTS: Overall, 10.3% of patients with PD and GBA sequencing carried a mutation. Carriers of neuropathic GD mutations (1.4% of patients) had hazard ratios (HRs) for global cognitive impairment of 3.17 (95% confidence interval [CI], 1.60-6.25) and a hastened decline in Mini-Mental State Exam scores compared to noncarriers (p = 0.0009). Carriers of complex GBA alleles (0.7%) had an HR of 3.22 (95% CI, 1.18-8.73; p = 0.022). By contrast, the common, non-neuropathic N370S mutation (1.5% of patients; HR, 1.96; 95% CI, 0.92-4.18) or nonpathogenic risk variants (6.6% of patients; HR, 1.36; 95% CI, 0.89-2.05) did not reach significance. INTERPRETATION: Mutations in the GBA gene pathogenic for neuropathic GD and complex alleles shift longitudinal cognitive decline in PD into "high gear." These findings suggest a relationship between specific types of GBA mutations and aggressive cognitive decline and have direct implications for improving the design of clinical trials. Ann Neurol 2016;80:674-685

    The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics

    Get PDF
    Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering
    corecore