75 research outputs found

    The Carboniferous System. Use of the new official names for the subsystems, series, and stages

    Get PDF
    As a result of votes by the Subcommission on Carboniferous Stratigraphy [SCCS] that were ratified by the International Commission on Stratigraphy [ICS] and the International Union of Geological Sciences [IUGS] over the period 1999-2004, the official subdivision of the Carboniferous System has been substantially modified. For subsystems, the terms Mississippian and Pennsylvanian should be used in all regions of the world to replace the more ambiguous and more awkward terms Lower and Upper Carboniferous. Regional geographic names for series and stages may continue to be used in those regions in which they developed, specifically in Western Europe, the USA, and China. However, their global equivalents should be denoted equally, particularly as they become better correlated, in order to facilitate global correlation in future work. The SCCS also voted to standardize the scale of all regional units termed stages at rough equivalency with the global stages now recognized in the Carboniferous (which are similar in scale to those in the adjacent Devonian and Permian Systems). Therefore, the up to 26 subdivisions of the Tournaisian, Visean, Namurian, Westphalian and Stephanian of the regional western European classification should now be ranked and termed only as substages

    Investigating faculty learning in the context of community-engaged scholarship

    Get PDF
    This study investigates faculty learning resulting from a faculty development program implemented at North Carolina State University to build capacity for community-engaged scholarship (CES). Previous work done under the auspices of Community Campus Partnerships for Health is extended by modifying an extant scale used to assess CES competencies and adding a retrospective pre-test to account for response-shift bias. This study also builds upon earlier work on assessment of student learning through the use of reflection by examining reflection products written by faculty at three points during the 12-month program. Quantitative analysis of responses to the CES competencies scale indicated a significant response-shift bias (participants overestimated their knowledge about CES at the start of the program). Qualitative investigation of participants’ reflection products suggests they learned new language for CES, achieved new discoveries about their community-engaged work, and often redefined their scholarly identities through the lens of engaged scholarship. Implications of this study include the value-added by examining faculty learning through reflection products as well as self-report scales, the need to build faculty capacity for learning through reflection, and the proposal of new strategies for documenting faculty learning from faculty development programs

    A decade of herbicide-resistant crops in Canada

    Get PDF
    Non-Peer ReviewedThis review examines some agronomic, economic, and environmental impacts of herbicide-resistant (HR) canola, soybean, corn, and wheat in Canada after 10 years of growing HR cultivars. The rapid adoption of HR canola and soybean suggests a net economic benefit to farmers. HR crops often have improved weed management, greater yields or economic returns, and similar or reduced environmental impact compared with their non-HR crop counterparts. There are no marked changes in volunteer weed problems associated with these crops, except in zero-tillage systems when glyphosate is used alone to control canola volunteers. Although gene flow from glyphosate-HR canola to indigenous populations of bird’s rape in eastern Canada has been measured, enrichment of hybrid plants in such populations should only occur when and where herbicide selection pressure is applied. Weed shifts as a consequence of HR canola have been documented, but a reduction in weed species diversity has not been demonstrated. Reliance on HR crops in rotations using the same mode-of-action-herbicide and/or multiple in-crop herbicide applications over time can result in intense selection pressure for weed resistance and consequently, greater herbicide use in the future to control HR weed biotypes. History has repeatedly shown that cropping system diversity is the pillar of sustainable agriculture; stewardship of HR crops must adhere to this fundamental principle

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres

    Get PDF
    Abstract: Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the “Grand Tack” model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community

    Global perspectives on observing ocean boundary current systems

    Get PDF
    Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. Next steps in the development of boundary current observing systems are considered, leading to several specific recommendations

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The Carboniferous System. Use of the new official names for the subsystems, series, and stages

    No full text
    As a result of votes by the Subcommission on Carboniferous Stratigraphy [SCCS] that were ratified by the International Commission on Stratigraphy [ICS] and the International Union of Geological Sciences [IUGS] over the period 1999-2004, the official subdivision of the Carboniferous System has been substantially modified. For subsystems, the terms Mississippian and Pennsylvanian should be used in all regions of the world to replace the more ambiguous and more awkward terms Lower and Upper Carboniferous. Regional geographic names for series and stages may continue to be used in those regions in which they developed, specifically in Western Europe, the USA, and China. However, their global equivalents should be denoted equally, particularly as they become better correlated, in order to facilitate global correlation in future work. The SCCS also voted to standardize the scale of all regional units termed stages at rough equivalency with the global stages now recognized in the Carboniferous (which are similar in scale to those in the adjacent Devonian and Permian Systems). Therefore, the up to 26 subdivisions of the Tournaisian, Visean, Namurian, Westphalian and Stephanian of the regional western European classification should now be ranked and termed only as substages
    corecore