100 research outputs found
High-resolution spectroscopy of the R Coronae Borealis and Other Hydrogen Deficient Stars
High-resolution spectroscopy is a very important tool for studying stellar
physics, perhaps, particularly so for such enigmatic objects like the R Coronae
Borealis and related Hydrogen deficient stars that produce carbon dust in
addition to their peculiar abundances.
Examples of how high-resolution spectroscopy is used in the study of these
stars to address the two major puzzles are presented: (i) How are such rare
H-deficient stars created? and (ii) How and where are the obscuring soot clouds
produced around the R Coronae Borealis stars?Comment: 16 pages, 9 figures, Astrophysics and Space Science Proceedings,
Springer-Verlag, Berlin, 201
Site investigation for the effects of vegetation on ground stability
The procedure for geotechnical site investigation is well established but little attention is currently given to investigating the potential of vegetation to assist with ground stability. This paper describes how routine investigation procedures may be adapted to consider the effects of the vegetation. It is recommended that the major part of the vegetation investigation is carried out, at relatively low cost, during the preliminary (desk) study phase of the investigation when there is maximum flexibility to take account of findings in the proposed design and construction. The techniques available for investigation of the effects of vegetation are reviewed and references provided for further consideration. As for general geotechnical investigation work, it is important that a balance of effort is maintained in the vegetation investigation between (a) site characterisation (defining and identifying the existing and proposed vegetation to suit the site and ground conditions), (b) testing (in-situ and laboratory testing of the vegetation and root systems to provide design parameters) and (c) modelling (to analyse the vegetation effects)
Reddening law and interstellar dust properties along Magellanic sight-lines
This study establishes that SMC, LMC and Milky Way extinction curves obey the
same extinction law which depends on the 2200A bump size and one parameter, and
generalizes the Cardelli, Clayton and Mathis (1989) relationship. This suggests
that extinction in all three galaxies is of the same nature. The role of linear
reddening laws over all the visible/UV wavelength range, particularly important
in the SMC but also present in the LMC and in the Milky Way, is also
highlighted and discussed.Comment: accepted for publication in Astrophysics and Space Science. 16 pages,
12 figures. Some figures are colour plot
Prospects for Studies of Stellar Evolution and Stellar Death in the JWST Era
I review the prospects for studies of the advanced evolutionary stages of
low-, intermediate- and high-mass stars by the JWST and concurrent facilities,
with particular emphasis on how they may help elucidate the dominant
contributors to the interstellar dust component of galaxies. Observations
extending from the mid-infrared to the submillimeter can help quantify the
heavy element and dust species inputs to galaxies from AGB stars. JWST's MIRI
mid-infrared instrument will be so sensitive that observations of the dust
emission from individual intergalactic AGB stars and planetary nebulae in the
Virgo Cluster will be feasible. The Herschel Space Observatory will enable the
last largely unexplored spectral region, the far-IR to the submillimeter, to be
surveyed for new lines and dust features, while SOFIA will cover the wavelength
gap between JWST and Herschel, a spectral region containing important fine
structure lines, together with key water-ice and crystalline silicate bands.
Spitzer has significantly increased the number of Type II supernovae that have
been surveyed for early-epoch dust formation but reliable quantification of the
dust contributions from massive star supernovae of Type II, Type Ib and Type Ic
to low- and high-redshift galaxies should come from JWST MIRI observations,
which will be able to probe a volume over 1000 times larger than Spitzer.Comment: 24 pages, 19 figures. To appear in `Astrophysics in the Next Decade:
JWST and Concurrent Facilities' (JWST Conference Proceedings), edited by H.
A. Thronson, M. Stiavelli and A. G. G. M. Tielens; Springer Series:
Astrophysics and Space Science Proceeding
Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes and a truncation of a few times 105 . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628
Tissue culture of ornamental cacti
Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family
Erratum: Dust and Gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. I. Dust Properties and Insights into the Origin of the Submm Excess Emission (2014, ApJ, 797, 85)
Interstellar matter and star formatio
Classification of current anticancer immunotherapies
During the past decades, anticancer immunotherapy has evolved from a promising
therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are
now approved by the US Food and Drug Administration and the European Medicines
Agency for use in cancer patients, and many others are being investigated as standalone
therapeutic interventions or combined with conventional treatments in clinical
studies. Immunotherapies may be subdivided into “passive” and “active” based on
their ability to engage the host immune system against cancer. Since the anticancer
activity of most passive immunotherapeutics (including tumor-targeting monoclonal
antibodies) also relies on the host immune system, this classification does not properly
reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer
immunotherapeutics can be classified according to their antigen specificity. While some
immunotherapies specifically target one (or a few) defined tumor-associated antigen(s),
others operate in a relatively non-specific manner and boost natural or therapy-elicited
anticancer immune responses of unknown and often broad specificity. Here, we propose
a critical, integrated classification of anticancer immunotherapies and discuss the clinical
relevance of these approaches
- …