87 research outputs found

    Helicobacter pylori infection is associated with an increased rate of diabetes.

    Get PDF
    ObjectiveChronic infections could be contributing to the socioeconomic gradient in chronic diseases. Although chronic infections have been associated with increased levels of inflammatory cytokines and cardiovascular disease, there is limited evidence on how infections affect risk of diabetes.Research design and methodsWe examined the association between serological evidence of chronic viral and bacterial infections and incident diabetes in a prospective cohort of Latino elderly. We analyzed data on 782 individuals aged >60 years and diabetes-free in 1998-1999, whose blood was tested for antibodies to herpes simplex virus 1, varicella virus, cytomegalovirus, Helicobacter pylori, and Toxoplasma gondii and who were followed until June 2008. We used Cox proportional hazards regression to estimate the relative incidence rate of diabetes by serostatus, with adjustment for age, sex, education, cardiovascular disease, smoking, and cholesterol levels.ResultsIndividuals seropositive for herpes simplex virus 1, varicella virus, cytomegalovirus, and T. gondii did not show an increased rate of diabetes, whereas those who were seropositive for H. pylori at enrollment were 2.7 times more likely at any given time to develop diabetes than seronegative individuals (hazard ratio 2.69 [95% CI 1.10-6.60]). Controlling for insulin resistance, C-reactive protein and interleukin-6 did not attenuate the effect of H. pylori infection.ConclusionsWe demonstrated for the first time that H. pylori infection leads to an increased rate of incident diabetes in a prospective cohort study. Our findings implicate a potential role for antibiotic and gastrointestinal treatment in preventing diabetes

    The Impact of Bisphenol A and Triclosan on Immune Parameters in the U.S. Population, NHANES 2003–2006

    Get PDF
    Background: Exposure to environmental toxicants is associated with numerous disease outcomes, many of which involve underlying immune and inflammatory dysfunction. Objectives: To address the gap between environmental exposures and immune dysfunction, we investigated the association of two endocrine-disrupting compounds (EDCs) with markers of immune function. Methods: Using data from the 2003–2006 National Health and Nutrition Examination Survey, we compared urinary bisphenol A (BPA) and triclosan levels with serum cytomegalovirus (CMV) antibody levels and diagnosis of allergies or hay fever in U.S. adults and children ≥ 6 years of age. We used multivariate ordinary least squares linear regression models to examine the association of BPA and triclosan with CMV antibody titers, and multivariate logistic regression models to investigate the association of these chemicals with allergy or hay fever diagnosis. Statistical models were stratified by age (\u3c 18 years and ≥ 18 years). Results: In analyses adjusted for age, sex, race, body mass index, creatinine levels, family income, and educational attainment, in the ≥ 18-year age group, higher urinary BPA levels were associated with higher CMV antibody titers (p \u3c 0.001). In the \u3c 18-year age group, lower levels of BPA were associated with higher CMV antibody titers (p \u3c 0.05). However, triclosan, but not BPA, showed a positive association with allergy or hay fever diagnosis. In the \u3c 18-year age group, higher levels of triclosan were associated with greater odds of having been diagnosed with allergies or hay fever (p \u3c 0.01). Conclusions: EDCs such as BPA and triclosan may negatively affect human immune function as measured by CMV antibody levels and allergy or hay fever diagnosis, respectively, with differential consequences based on age. Additional studies should be done to investigate these findings

    Experimental infection of conventional nursing pigs and their dams with \u3ci\u3ePorcine deltacoronavirus\u3c/i\u3e

    Get PDF
    Porcine deltacoronavirus (PDCoV) is a newly identified virus that has been detected in swine herds of North America associated with enteric disease. The aim of this study was to demonstrate the pathogenicity, course of infection, virus kinetics, and aerosol transmission of PDCoV using 87 conventional piglets and their 9 dams, including aerosol and contact controls to emulate field conditions. Piglets 2–4 days of age and their dams were administered an oronasal PDCoV inoculum with a quantitative real-time reverse transcription (qRT)-PCR quantification cycle (Cq) value of 22 that was generated from a field sample having 100% nucleotide identity to USA/Illinois121/2014 determined by metagenomic sequencing and testing negative for other enteric disease agents using standard assays. Serial samples of blood, serum, oral fluids, nasal and fecal swabs, and tissues from sequential autopsy, conducted daily on days 1–8 and regular intervals thereafter, were collected throughout the 42-day study for qRT-PCR, histopathology, and immunohistochemistry. Diarrhea developed in all inoculated and contact control pigs, including dams, by 2 days post-inoculation (dpi) and in aerosol control pigs and dams by 3–4 dpi, with resolution occurring by 12 dpi. Mild to severe atrophic enteritis with PDCoV antigen staining was observed in the small intestine of affected piglets from 2 to 8 dpi. Mesenteric lymph node and small intestine were the primary sites of antigen detection by immunohistochemistry, and virus RNA was detected in these tissues to the end of the study. Virus RNA was detectable in piglet fecal swabs to 21 dpi, and dams to 14–35 dpi

    Purine Biosynthesis Metabolically Constrains Intracellular Survival of Uropathogenic Escherichia coli

    Get PDF
    The ability to de novo synthesize purines has been associated with the intracellular survival of multiple bacterial pathogens. Uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections, undergoes a transient intracellular lifestyle during which bacteria clonally expand into multicellular bacterial communities within the cytoplasm of bladder epithelial cells. Here, we characterized the contribution of the conserved de novo purine biosynthesis-associated locus cvpA-purF to UPEC pathogenesis. Deletion of cvpA-purF, or of purF alone, abolished de novo purine biosynthesis but did not impact bacterial adherence properties in vitro or in the bladder lumen. However, upon internalization by bladder epithelial cells, UPEC deficient in de novo purine biosynthesis was unable to expand into intracytoplasmic bacterial communities over time, unless it was extrachromosomally complemented. These findings indicate that UPEC is deprived of purine nucleotides within the intracellular niche and relies on de novo purine synthesis to meet this metabolic requirement

    Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study

    Get PDF
    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studie

    A Survey of New Temperature-Sensitive, Embryonic-Lethal Mutations in C. elegans: 24 Alleles of Thirteen Genes

    Get PDF
    To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci

    Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study

    Get PDF
    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies

    Review of the evidence regarding the use of antenatal multiple micronutrient supplementation in low- and middle-income countries.

    Get PDF
    Inadequate micronutrient intakes are relatively common in low- and middle-income countries (LMICs), especially among pregnant women, who have increased micronutrient requirements. This can lead to an increase in adverse pregnancy and birth outcomes. This review presents the conclusions of a task force that set out to assess the prevalence of inadequate micronutrient intakes and adverse birth outcomes in LMICs; the data from trials comparing multiple micronutrient supplements (MMS) that contain iron and folic acid (IFA) with IFA supplements alone; the risks of reaching the upper intake levels with MMS; and the cost-effectiveness of MMS compared with IFA. Recent meta-analyses demonstrate that MMS can reduce the risks of preterm birth, low birth weight, and small for gestational age in comparison with IFA alone. An individual-participant data meta-analysis also revealed even greater benefits for anemic and underweight women and female infants. Importantly, there was no increased risk of harm for the pregnant women or their infants with MMS. These data suggest that countries with inadequate micronutrient intakes should consider supplementing pregnant women with MMS as a cost-effective method to reduce the risk of adverse birth outcomes

    Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7

    Get PDF
    PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies
    corecore