581 research outputs found

    Inside-Out Evacuation of Transitional Protoplanetary Disks by the Magneto-Rotational Instability

    Full text link
    How do T Tauri disks accrete? The magneto-rotational instability (MRI) supplies one means, but protoplanetary disk gas is typically too poorly ionized to be magnetically active. Here we show that the MRI can, in fact, explain observed accretion rates for the sub-class of T Tauri disks known as transitional systems. Transitional disks are swept clean of dust inside rim radii of ~10 AU. Stellar coronal X-rays ionize material in the disk rim, activating the MRI there. Gas flows from the rim to the star, at a rate limited by the depth to which X-rays ionize the rim wall. The wider the rim, the larger the surface area that the rim wall exposes to X-rays, and the greater the accretion rate. Interior to the rim, the MRI continues to transport gas; the MRI is sustained even at the disk midplane by super-keV X-rays that Compton scatter down from the disk surface. Accretion is therefore steady inside the rim. Blown out by radiation pressure, dust largely fails to accrete with gas. Contrary to what is usually assumed, ambipolar diffusion, not Ohmic dissipation, limits how much gas is MRI-active. We infer values for the transport parameter alpha on the order of 0.01 for GM Aur, TW Hyd, and DM Tau. Because the MRI can only afflict a finite radial column of gas at the rim, disk properties inside the rim are insensitive to those outside. Thus our picture provides one robust setting for planet-disk interaction: a protoplanet interior to the rim will interact with gas whose density, temperature, and transport properties are definite and decoupled from uncertain initial conditions. Our study also supplies half the answer to how disks dissipate: the inner disk drains from the inside out by the MRI, while the outer disk photoevaporates by stellar ultraviolet radiation.Comment: Accepted to Nature Physics June 7, 2007. The manuscript for publication is embargoed per Nature policy. This arxiv.org version contains more technical details and discussion, and is distributed with permission from the editors. 10 pages, 4 figure

    Epistatic Interactions Alter Dynamics of Multilocus Gene-for-Gene Coevolution

    Get PDF
    Fitness costs associated with resistance or virulence genes are thought to play a key role in determining the dynamics of gene-for-gene (GFG) host-parasite coevolution. However, the nature of interactions between fitness effects of multiple resistance or virulence genes (epistasis) has received less attention. To examine effects of the functional form of epistasis on the dynamics of GFG host-parasite coevolution we modified a classic multilocus GFG model framework. We show that the type of epistasis between virulence genes largely determines coevolutionary dynamics, and that coevolutionary fluctuations are more likely with acceleratingly costly (negative) than with linear or deceleratingly costly (positive) epistasis. Our results demonstrate that the specific forms of interaction between multiple resistance or virulence genes are a crucial determinant of host-parasite coevolutionary dynamics

    Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use

    Get PDF
    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù

    Spatial Analyses of Mono, Di and Trinucleotide Trends in Plant Genes

    Get PDF
    Genomic DNA sequences display compositional heterogeneity on many scales. In this paper we analyzed tendencies and anomalies in the occurence of mono, di and trinucleotides in structural regions of plant genes. Representation of these trends as a function of position along genic sequences highlighted compositional features peculiar of either monocots or eudicots that were remarkably uniform within these two evolutionary clades. The most evident of these features appeared in the form of gradient of base content along the direction of transcription. The robustness of such a representation was validated in sequences sub-datasets generated considering structural and compositional features such as total length of cds, overall GC content and genic orientation in the genome. Piecewise regression analyses indicated that the gradients could be conveniently approximated to a two segmented model where a first region featuring a steep slope is followed by a second segment fitting a milder variation. In general, monocots species showed steeper segments than eudicots. The guanine gradient was the most distinctive feature between the two evolutionary clades, being moderately increasing in eudicots and firmly decreasing in monocots. Single gene investigation revealed that a high proportion of genes show compositional trends compatible with a segmented model suggesting that these features are essential attributes of gene organization. Dinucleotide and trinucleotide biases were referred to expectation based on a random union of the component elements. The average bias at dinucleotide level identified a significant undererpresentation of some dinucleotide and the overrepresention of others. The bias at trinucleotide level was on average low. Finally, the analysis of bryophyte coding sequences showed mononucleotide, dinucleotide and trinucleotide compositional trends resembling those of higher plants. This finding suggested that the emergenge of compositional bias is an ancient event in evolution which was already present at the time of land conquest by green plants

    A High-Throughput Screen for Tuberculosis Progression

    Get PDF
    One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of tuberculosis is fast becoming the bottleneck in tuberculosis research. We successfully developed such a system using the zebrafish Mycobacterium marinum infection model, which is a well-characterized model for tuberculosis progression with biomedical significance, mimicking hallmarks of human tuberculosis pathology. Importantly, we demonstrate the suitability of our system to directly study M. tuberculosis, showing for the first time that the human pathogen can propagate in this vertebrate model, resulting in similar early disease symptoms to those observed upon M. marinum infection. Our system is capable of screening for disease progression via robotic yolk injection of early embryos and visual flow screening of late-stage larvae. We also show that this system can reliably recapitulate the standard caudal vein injection method with a throughput level of 2,000 embryos per hour. We additionally demonstrate the possibility of studying signal transduction leading to disease progression using reverse genetics at high-throughput levels. Importantly, we use reference compounds to validate our system in the testing of molecules that prevent tuberculosis progression, making it highly suited for investigating novel anti-tuberculosis compounds in vivo

    The impact of psychological factors on recovery from injury: a multicentre cohort study

    Get PDF
    Purpose Unintentional injuries have a significant long-term health impact in working age adults. Depression, anxiety and post-traumatic stress disorder are common post-injury, but their impact on self-reported recovery has not been investigated in general injury populations. This study investigated the role of psychological predictors 1 month post-injury in subsequent self-reported recovery from injury in working-aged adults. Methods A multicentre cohort study was conducted of 668 unintentionally injured adults admitted to five UK hospitals followed up at 1, 2, 4 and 12 months post-injury. Logistic regression explored relationships between psychological morbidity 1 month post-injury and self-reported recovery 12 months post-injury, adjusting for health, demographic, injury and socio-legal factors. Multiple imputations were used to impute missing values. Results A total of 668 adults participated at baseline, 77% followed up at 1 month and 63% at 12 months, of whom 383 (57%) were included in the main analysis. Multiple imputation analysis included all 668 participants. Increasing levels of depression scores and increasing levels of pain at 1 month and an increasing number of nights in hospital were associated with significantly reduced odds of recovery at 12 months, adjusting for age, sex, centre, employment and deprivation. The findings were similar in the multiple imputation analysis, except that pain had borderline statistical significance. Conclusions Depression 1 month post-injury is an important predictor of recovery, but other factors, especially pain and nights spent in hospital, also predict recovery. Identifying and managing depression and providing adequate pain control are essential in clinical care post-injury

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008
    • …
    corecore