53 research outputs found

    Analytical protocols based on high-resolution mass spectrometry for characterizing emerging contaminants and their degradation products in foodstuff and environment

    Get PDF
    In this PhD thesis, the capability of analytical systems based on high-resolution mass spectrometry (HRMS) has been investigated for the determination of emerging contaminants in environmental matrices and foodstuff. Since the molecular structures of the emerging contaminants could be know as well as unknown, target, suspect and non-target analyses have to be developed in order to propose a “mass-based” advanced screening. Attention has been focused on the scale-up process in the identification confidence by developing different specific protocols. Two protocols based on HPLC/Q-TOF-MS have been developed for the simultaneous screening and confirmatory analysis of target and non-target cyanotoxins in freshwater intended for human consumption, PDE-5 inhibitors and analogues in food supplements marked as erectile dysfunction remedies. Both protocols have been optimized with the aim to obtain HRMS data of pseudomolecular ions and fragmentation patterns in tandem MS mode. In-house databases were implemented to simplify the data treatment. The application of these protocols in “non-target screening” mode has been attempted in real samples and in the frame of a collaborative trial organized by European NORMAN foundation as regard as the analysis of water contaminants. The exercise was complex and time consuming, and it has highlighted the strengths and weaknesses of the developed protocols. The crucial step in non-target screening was the assignment of reliable molecular formula to the m/z values. A specific workflow based on direct infusion and HRMS analysis by using an Orbitrap™ mass spectrometer has been developed for the characterization of PM2.5 organic fraction. The automatization of the data treatment using Mathematica based algorithms was accomplished for studying the chemical composition of PM2.5 organic fraction. Contextually, the possible use of the Atmospheric Pressure Photoionization source for characterizing PM2.5 organic fraction has been investigated on real samples

    Becoming adults: Exploring the late ontogeny of the human talus

    Get PDF
    Introduction: The talus plays an important role in receiving and dissipating the forces and linking the leg and the foot. As such, it is of paramount importance to analyze how its morphology, internal and external, changes during late ontogeny and through adolescence. Method: To explore both the external shape and the internal architecture of the talus, Geometric Morphometrics and trabecular analysis have been applied to a sample of 35 tali from modern human juveniles aged between 5 and 15 years old (Middle Neolithic (4800-4500 BCE) to mid-20th century). Results: Results show that, as the overall size of the talus increases, the shape and orientation of talar facets also change. The youngest individuals exhibit a functional talus that is still characterized by a relatively immature shape (e.g., subtly expressed margins of articular surfaces) with articular facets only minimally rotated towards an adult configuration. In adolescents, talar shape has achieved adult form after the age of 11, with all the articular facets and posterior processes well-developed. Considering internal morphology, trabecular bone varies between age classes. While Bone Volume Fraction shifts during the age 5-15 range, Degree of Anisotropy is relatively more stable over the developmental period examined in the study since it exhibits smaller variations between age classes. Discussion: This study examined the late ontogeny of the human talus by considering both internal and external morphology. Results suggest that, although the locomotion has already assumed an adult-like pattern, the exploration of late talar growth may help understand how the talus adapts to changes in locomotor activity and how it responds to the increase in weight. Present results can be used to a better understanding of talar plasticity, improving interpretations of adult human talar form

    New insights on Celtic migration in Hungary and Italy through the analysis of non-metric dental traits

    Get PDF
    The Iron Age is characterized by an extended interweaving of movements by Celts in Europe. Several waves of Celts from Western and Central Europe migrated southeast and west from the core area of the La Téne culture (between Bourgogne and Bohemia). Through the analysis of non-metric dental traits, this work aims to understand the biological relationship among Celtic groups arrived in Italy and the Carpathian Basin, as well as between local populations and Celtic newcomers. A total of 10 non-metric dental traits were analyzed to evaluate biological affinities among Celts (Sopron-Krautacker and Pilismarót-Basaharc) and Scythians-related populations from Hungary (Tápiószele), Celts from continental Europe (Switzerland and Austria), two Iron Age Etruscan-Celtic sites from northern Italy (Monterenzio Vecchio and Monte Bibele), 13 Iron Age central-southern Italic necropolises, and the northern Italian Bronze Age necropolis of Scalvinetto. Strontium isotopes were measured on individuals from the necropolis of Monte Bibele to infer their local or non-local origin. Results highlight the existence of statistically significant differences between Celts and autochthonous Italian groups. Celtic groups from Hungary and Italy (i.e., non-local individuals of Monterenzio Vecchio and Monte Bibele) share a similar biological background, supporting the historical records mentioning a common origin for Celts migrated to the eastern and southern borders of today’s Europe. The presence of a supposed Steppean ancestry both in Celts from Hungary and Celts from northern Italy corroborates the hypothesis of the existence of a westward migration of individuals and genes from the Steppe towards northern Italy during the Bronze and Iron Age, which contributed to the biological variability of pre-Celtic and later Celtic populations, respectively. Conversely, individuals from central-southern Italy show an autochthonous pre-Iron Age background. Lastly, this work supports the existence of Celtic migratory routes in northern Italy, as shown by biological and cultural admixture between Celts and Italics living together.E.P. was funded from the Erasmus+ Traineeship Program/KA103, Agreement n. 2020-1-IT02-KA103-078332. T.H. and K.G. were supported by the Hungarian Scientific Research Fund (FK128013), the Bolyai Scholarship granted by the Hungarian Academy of Sciences and the ÚNKP-22-5 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A new processing scheme for ultra-high resolution direct infusion mass spectrometry data

    Get PDF
    High resolution, high accuracy mass spectrometry is widely used to characterise environmental or biological samples with highly complex composition enabling the identification of chemical composition of often unknown compounds. Despite instrumental advancements, the accurate molecular assignment of compounds acquired in high resolution mass spectra remains time consuming and requires automated algorithms, especially for samples covering a wide mass range and large numbers of compounds. A new processing scheme is introduced implementing filtering methods based on element assignment, instrumental error, and blank subtraction. Optional post-processing incorporates common ion selection across replicate measurements and shoulder ion removal. The scheme allows both positive and negative direct infusion electrospray ionisation (ESI) and atmospheric pressure photoionisation (APPI) acquisition with the same programs. An example application to atmospheric organic aerosol samples using an Orbitrap mass spectrometer is reported for both ionisation techniques resulting in final spectra with 0.8% and 8.4% of the peaks retained from the raw spectra for APPI positive and ESI negative acquisition, respectively.This work was supported by the European Research Council (ERC starting grant 279405) and by the U.K. Natural Environment Research Council (NERC grant NE/H52449X/1). ATZ thanks the Natural Sciences and Engineering Research Council of Canada, the Sir Winston Churchill Society of Edmonton, and the Cambridge Trust for PhD funding. IK was supported by a M. Curie Intra-European fellowship (project no. 254319

    Human talar ontogeny: Insights from morphological and trabecular changes during postnatal growth

    Get PDF
    The study of the development of human bipedalism can provide a unique perspective on the evolution of morphology and behavior across species. To generate new knowledge of these mechanisms, we analyze changes in both internal and external morphology of the growing human talus in a sample of modern human juveniles using an innovative approach. The sample consists of high‐resolution microCT scans of 70 modern juvenile tali, aged between 8 postnatal weeks and 10 years old, from a broad chronological range from Middle/Late Neolithic, that is, between 4800 and 4500 BCE, to the 20th century. We applied geometric morphometric and whole‐bone trabecular analysis (bone volume fraction, degree of anisotropy, trabecular number, thickness, and spacing) to all specimens to identify changes in the external and internal morphology during growth. Morphometric maps were also generated. During the first year of life, the talus has an immature and globular shape, with a dense, compact, and rather isotropic trabecular architecture, with numerous trabeculae packed closely together. This pattern changes while children acquire a more mature gait, and the talus tends to have a lower bone volume fraction, a higher anisotropy, and a more mature shape. The changes in talar internal and external morphologies reflect the different loading patterns experienced during growth, gradually shifting from an “unspecialized” morphology to a more complex one, following the development of bipedal gait. Our research shows that talar plasticity, even though genetically driven, may show mechanical influences and contribute to tracking the main locomotor milestones

    Contrasting patterns of nuclear and mtDNA diversity in Native American populations.

    Get PDF
    International audienceWe report an integrated analysis of nuclear (autosomal, X- and Y-chromosome) short tandem repeat (STR) data and mtDNA D-loop sequences obtained in the same set of 22 Native populations from across the Americas. A north to south gradient of decreasing population diversity was observed, in agreement with a settlement of the Americas from the extreme northwest of the continent. This correlation is stronger with "least cost distances," which consider the coasts as facilitators of migration. Continent-wide estimates of population structure are highest for the Y-chromosome and lowest for the autosomes, consistent with the effective size of the different marker systems examined. Population differentiation is highest in East South America and lowest in Meso America and the Andean region. Regional analyses suggest a deviation from mutation-drift equilibrium consistent with population expansion in Meso America and the Andes and population contraction in Northwest and East South America. These data hint at an early divergence of Andean and non-Andean South Americans and at a contrasting demographic history for populations from these regions

    Contrasting Patterns of Nuclear and mtDNA Diversity in Native American Populations

    Get PDF
    We report an integrated analysis of nuclear (autosomal, X- and Y-chromosome) short tandem repeat (STR) data and mtDNA D-loop sequences obtained in the same set of 22 Native populations from across the Americas. A north to south gradient of decreasing population diversity was observed, in agreement with a settlement of the Americas from the extreme northwest of the continent. This correlation is stronger with "least cost distances," which consider the coasts as facilitators of migration. Continent-wide estimates of population structure are highest for the Y-chromosome and lowest for the autosomes, consistent with the effective size of the different marker systems examined. Population differentiation is highest in East South America and lowest in Meso America and the Andean region. Regional analyses suggest a deviation from mutation-drift equilibrium consistent with population expansion in Meso America and the Andes and population contraction in Northwest and East South America. These data hint at an early divergence of Andean and non-Andean South Americans and at a contrasting demographic history for populations from these regions.Instituto Multidisciplinario de Biología Celula

    Reconstructing Native American population history

    Get PDF
    The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call First American. However, speakers of Eskimog-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America. © 2012 Macmillan Publishers Limited. All rights reserved.Fil: Reich, David. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados UnidosFil: Patterson, Nick. Massachusetts Institute of Technology; Estados UnidosFil: Campbell, Desmond. Colegio Universitario de Londres; Reino Unido. The University Of Hong Kong; Hong KongFil: Tandon, Arti. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados UnidosFil: Mazieres, Stéphane. Colegio Universitario de Londres; Reino UnidoFil: Ray, Nicolas. Universidad de Ginebra; SuizaFil: Parra, Maria V.. Colegio Universitario de Londres; Reino Unido. Universidad de Antioquia; ColombiaFil: Rojas, Winston. Colegio Universitario de Londres; Reino Unido. Universidad de Antioquia; ColombiaFil: Duque, Constanza. Universidad de Antioquia; Colombia. Colegio Universitario de Londres; Reino UnidoFil: Mesa, Natalia. Universidad de Antioquia; Colombia. Colegio Universitario de Londres; Reino UnidoFil: García, Luis F.. Universidad de Antioquia; ColombiaFil: Triana, Omar. Universidad de Antioquia; ColombiaFil: Blair, Silvia. Universidad de Antioquia; ColombiaFil: Maestre, Amanda. Universidad de Antioquia; ColombiaFil: Dib, Juan C.. Fundación Salud Para El Tró Pico; ColombiaFil: Bravi, Claudio Marcelo. Colegio Universitario de Londres; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Bailliet, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Corach, Daniel. Universidad de Buenos Aires; ArgentinaFil: Hünemeier, Tábita. Colegio Universitario de Londres; Reino Unido. Universidade Federal do Rio Grande do Sul; BrasilFil: Bortolini, Maria Cátira. Universidade Federal do Rio Grande do Sul; BrasilFil: Salzano, Francisco M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Petzl Erler, María Luiza. Universidade Federal do Paraná; BrasilFil: Acuña Alonzo, Victor. National Institute Of Anthropology And History; MéxicoFil: Aguilar Salinas, Carlos. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Canizales-Quinteros, Samuel. Universidad Nacional Autónoma de México; MéxicoFil: Tusié Luna, Teresa. Universidad Nacional Autónoma de México; MéxicoFil: Riba, Laura. Universidad Nacional Autónoma de México; MéxicoFil: Rodríguez Cruz, Maricela. Umae Hospital de Pediatría Centro Medico Nacional Siglo Xxi; MéxicoFil: Lopez Alarcón, Mardia. Umae Hospital de Pediatría Centro Medico Nacional Siglo Xxi; MéxicoFil: Coral Vazquez, Ramón. Instituto Politécnico Nacional; Méxic

    Reconstructing Native American Population History

    Get PDF
    The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America
    corecore